Stability of viscoelastic control systems

Classical root locus plot analysis is adapted to some one-dimensional, controlled, distributed, viscoelastic structures. The constitutive law that is used for the viscoelastic material may be modeled with fractional order derivatives provided the control law(s) involve similar derivatives. Two sampl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control 1988-04, Vol.33 (4), p.348-357
Hauptverfasser: Skaar, S.B., Michel, A.N., Miller, R.K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 357
container_issue 4
container_start_page 348
container_title IEEE transactions on automatic control
container_volume 33
creator Skaar, S.B.
Michel, A.N.
Miller, R.K.
description Classical root locus plot analysis is adapted to some one-dimensional, controlled, distributed, viscoelastic structures. The constitutive law that is used for the viscoelastic material may be modeled with fractional order derivatives provided the control law(s) involve similar derivatives. Two sample one-dimensional structures and control systems are used to introduce the approach. A partial-differential-equation representation of each structure is used as well as Ritz approximation. The effect of error due to approximation on stability conclusions is discussed in the context of this comparison.< >
doi_str_mv 10.1109/9.192189
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_6992377</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>192189</ieee_id><sourcerecordid>29052680</sourcerecordid><originalsourceid>FETCH-LOGICAL-c366t-58418a764a0ff5447477c9f25ffd95670c5dfce092ec36874758b3647441fd4a3</originalsourceid><addsrcrecordid>eNqF0E1LAzEQBuAgCtYqePa0BxE9bE2y-TxK8QsKHtRzSNMEImlTd1Kh_96ULXrsaRjmmZdhELokeEII1vd6QjQlSh-hEeFctZTT7hiNMCaq1VSJU3QG8FVbwRgZobv3YucxxbJtcmh-Irjsk4USXePyqvQ5NbCF4pdwjk6CTeAv9nWMPp8eP6Yv7ezt-XX6MGtdJ0RpuWJEWSmYxSFwxiST0ulAeQgLzYXEji-C81hTXxdUHXM170R1jIQFs90Y3Qy56z5_bzwUs6xX-ZTsyucNGKoxp0Lhw1AJQrXShyHHHZZ8B28H6PoM0Ptg1n1c2n5rCDa77xpthu9Wer3PtOBsCr1duQh_XmhNOykruxpY9N7_pw0ZvyH6fyc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>25030759</pqid></control><display><type>article</type><title>Stability of viscoelastic control systems</title><source>IEEE Electronic Library (IEL)</source><creator>Skaar, S.B. ; Michel, A.N. ; Miller, R.K.</creator><creatorcontrib>Skaar, S.B. ; Michel, A.N. ; Miller, R.K.</creatorcontrib><description>Classical root locus plot analysis is adapted to some one-dimensional, controlled, distributed, viscoelastic structures. The constitutive law that is used for the viscoelastic material may be modeled with fractional order derivatives provided the control law(s) involve similar derivatives. Two sample one-dimensional structures and control systems are used to introduce the approach. A partial-differential-equation representation of each structure is used as well as Ritz approximation. The effect of error due to approximation on stability conclusions is discussed in the context of this comparison.&lt; &gt;</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/9.192189</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Capacitive sensors ; Computer science; control theory; systems ; Control system analysis ; Control systems ; Control theory. Systems ; Damping ; Distributed control ; Elasticity ; Exact sciences and technology ; Feedback control ; Stability ; Stress ; Transfer functions ; Viscosity</subject><ispartof>IEEE transactions on automatic control, 1988-04, Vol.33 (4), p.348-357</ispartof><rights>1989 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c366t-58418a764a0ff5447477c9f25ffd95670c5dfce092ec36874758b3647441fd4a3</citedby><cites>FETCH-LOGICAL-c366t-58418a764a0ff5447477c9f25ffd95670c5dfce092ec36874758b3647441fd4a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/192189$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/192189$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=6992377$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Skaar, S.B.</creatorcontrib><creatorcontrib>Michel, A.N.</creatorcontrib><creatorcontrib>Miller, R.K.</creatorcontrib><title>Stability of viscoelastic control systems</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>Classical root locus plot analysis is adapted to some one-dimensional, controlled, distributed, viscoelastic structures. The constitutive law that is used for the viscoelastic material may be modeled with fractional order derivatives provided the control law(s) involve similar derivatives. Two sample one-dimensional structures and control systems are used to introduce the approach. A partial-differential-equation representation of each structure is used as well as Ritz approximation. The effect of error due to approximation on stability conclusions is discussed in the context of this comparison.&lt; &gt;</description><subject>Applied sciences</subject><subject>Capacitive sensors</subject><subject>Computer science; control theory; systems</subject><subject>Control system analysis</subject><subject>Control systems</subject><subject>Control theory. Systems</subject><subject>Damping</subject><subject>Distributed control</subject><subject>Elasticity</subject><subject>Exact sciences and technology</subject><subject>Feedback control</subject><subject>Stability</subject><subject>Stress</subject><subject>Transfer functions</subject><subject>Viscosity</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1988</creationdate><recordtype>article</recordtype><recordid>eNqF0E1LAzEQBuAgCtYqePa0BxE9bE2y-TxK8QsKHtRzSNMEImlTd1Kh_96ULXrsaRjmmZdhELokeEII1vd6QjQlSh-hEeFctZTT7hiNMCaq1VSJU3QG8FVbwRgZobv3YucxxbJtcmh-Irjsk4USXePyqvQ5NbCF4pdwjk6CTeAv9nWMPp8eP6Yv7ezt-XX6MGtdJ0RpuWJEWSmYxSFwxiST0ulAeQgLzYXEji-C81hTXxdUHXM170R1jIQFs90Y3Qy56z5_bzwUs6xX-ZTsyucNGKoxp0Lhw1AJQrXShyHHHZZ8B28H6PoM0Ptg1n1c2n5rCDa77xpthu9Wer3PtOBsCr1duQh_XmhNOykruxpY9N7_pw0ZvyH6fyc</recordid><startdate>19880401</startdate><enddate>19880401</enddate><creator>Skaar, S.B.</creator><creator>Michel, A.N.</creator><creator>Miller, R.K.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>FR3</scope><scope>JQ2</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19880401</creationdate><title>Stability of viscoelastic control systems</title><author>Skaar, S.B. ; Michel, A.N. ; Miller, R.K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c366t-58418a764a0ff5447477c9f25ffd95670c5dfce092ec36874758b3647441fd4a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1988</creationdate><topic>Applied sciences</topic><topic>Capacitive sensors</topic><topic>Computer science; control theory; systems</topic><topic>Control system analysis</topic><topic>Control systems</topic><topic>Control theory. Systems</topic><topic>Damping</topic><topic>Distributed control</topic><topic>Elasticity</topic><topic>Exact sciences and technology</topic><topic>Feedback control</topic><topic>Stability</topic><topic>Stress</topic><topic>Transfer functions</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Skaar, S.B.</creatorcontrib><creatorcontrib>Michel, A.N.</creatorcontrib><creatorcontrib>Miller, R.K.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Skaar, S.B.</au><au>Michel, A.N.</au><au>Miller, R.K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability of viscoelastic control systems</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>1988-04-01</date><risdate>1988</risdate><volume>33</volume><issue>4</issue><spage>348</spage><epage>357</epage><pages>348-357</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>Classical root locus plot analysis is adapted to some one-dimensional, controlled, distributed, viscoelastic structures. The constitutive law that is used for the viscoelastic material may be modeled with fractional order derivatives provided the control law(s) involve similar derivatives. Two sample one-dimensional structures and control systems are used to introduce the approach. A partial-differential-equation representation of each structure is used as well as Ritz approximation. The effect of error due to approximation on stability conclusions is discussed in the context of this comparison.&lt; &gt;</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/9.192189</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9286
ispartof IEEE transactions on automatic control, 1988-04, Vol.33 (4), p.348-357
issn 0018-9286
1558-2523
language eng
recordid cdi_pascalfrancis_primary_6992377
source IEEE Electronic Library (IEL)
subjects Applied sciences
Capacitive sensors
Computer science
control theory
systems
Control system analysis
Control systems
Control theory. Systems
Damping
Distributed control
Elasticity
Exact sciences and technology
Feedback control
Stability
Stress
Transfer functions
Viscosity
title Stability of viscoelastic control systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T20%3A16%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20of%20viscoelastic%20control%20systems&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Skaar,%20S.B.&rft.date=1988-04-01&rft.volume=33&rft.issue=4&rft.spage=348&rft.epage=357&rft.pages=348-357&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/9.192189&rft_dat=%3Cproquest_RIE%3E29052680%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=25030759&rft_id=info:pmid/&rft_ieee_id=192189&rfr_iscdi=true