Stability of viscoelastic control systems
Classical root locus plot analysis is adapted to some one-dimensional, controlled, distributed, viscoelastic structures. The constitutive law that is used for the viscoelastic material may be modeled with fractional order derivatives provided the control law(s) involve similar derivatives. Two sampl...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on automatic control 1988-04, Vol.33 (4), p.348-357 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 357 |
---|---|
container_issue | 4 |
container_start_page | 348 |
container_title | IEEE transactions on automatic control |
container_volume | 33 |
creator | Skaar, S.B. Michel, A.N. Miller, R.K. |
description | Classical root locus plot analysis is adapted to some one-dimensional, controlled, distributed, viscoelastic structures. The constitutive law that is used for the viscoelastic material may be modeled with fractional order derivatives provided the control law(s) involve similar derivatives. Two sample one-dimensional structures and control systems are used to introduce the approach. A partial-differential-equation representation of each structure is used as well as Ritz approximation. The effect of error due to approximation on stability conclusions is discussed in the context of this comparison.< > |
doi_str_mv | 10.1109/9.192189 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_6992377</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>192189</ieee_id><sourcerecordid>29052680</sourcerecordid><originalsourceid>FETCH-LOGICAL-c366t-58418a764a0ff5447477c9f25ffd95670c5dfce092ec36874758b3647441fd4a3</originalsourceid><addsrcrecordid>eNqF0E1LAzEQBuAgCtYqePa0BxE9bE2y-TxK8QsKHtRzSNMEImlTd1Kh_96ULXrsaRjmmZdhELokeEII1vd6QjQlSh-hEeFctZTT7hiNMCaq1VSJU3QG8FVbwRgZobv3YucxxbJtcmh-Irjsk4USXePyqvQ5NbCF4pdwjk6CTeAv9nWMPp8eP6Yv7ezt-XX6MGtdJ0RpuWJEWSmYxSFwxiST0ulAeQgLzYXEji-C81hTXxdUHXM170R1jIQFs90Y3Qy56z5_bzwUs6xX-ZTsyucNGKoxp0Lhw1AJQrXShyHHHZZ8B28H6PoM0Ptg1n1c2n5rCDa77xpthu9Wer3PtOBsCr1duQh_XmhNOykruxpY9N7_pw0ZvyH6fyc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>25030759</pqid></control><display><type>article</type><title>Stability of viscoelastic control systems</title><source>IEEE Electronic Library (IEL)</source><creator>Skaar, S.B. ; Michel, A.N. ; Miller, R.K.</creator><creatorcontrib>Skaar, S.B. ; Michel, A.N. ; Miller, R.K.</creatorcontrib><description>Classical root locus plot analysis is adapted to some one-dimensional, controlled, distributed, viscoelastic structures. The constitutive law that is used for the viscoelastic material may be modeled with fractional order derivatives provided the control law(s) involve similar derivatives. Two sample one-dimensional structures and control systems are used to introduce the approach. A partial-differential-equation representation of each structure is used as well as Ritz approximation. The effect of error due to approximation on stability conclusions is discussed in the context of this comparison.< ></description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/9.192189</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Capacitive sensors ; Computer science; control theory; systems ; Control system analysis ; Control systems ; Control theory. Systems ; Damping ; Distributed control ; Elasticity ; Exact sciences and technology ; Feedback control ; Stability ; Stress ; Transfer functions ; Viscosity</subject><ispartof>IEEE transactions on automatic control, 1988-04, Vol.33 (4), p.348-357</ispartof><rights>1989 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c366t-58418a764a0ff5447477c9f25ffd95670c5dfce092ec36874758b3647441fd4a3</citedby><cites>FETCH-LOGICAL-c366t-58418a764a0ff5447477c9f25ffd95670c5dfce092ec36874758b3647441fd4a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/192189$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/192189$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=6992377$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Skaar, S.B.</creatorcontrib><creatorcontrib>Michel, A.N.</creatorcontrib><creatorcontrib>Miller, R.K.</creatorcontrib><title>Stability of viscoelastic control systems</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>Classical root locus plot analysis is adapted to some one-dimensional, controlled, distributed, viscoelastic structures. The constitutive law that is used for the viscoelastic material may be modeled with fractional order derivatives provided the control law(s) involve similar derivatives. Two sample one-dimensional structures and control systems are used to introduce the approach. A partial-differential-equation representation of each structure is used as well as Ritz approximation. The effect of error due to approximation on stability conclusions is discussed in the context of this comparison.< ></description><subject>Applied sciences</subject><subject>Capacitive sensors</subject><subject>Computer science; control theory; systems</subject><subject>Control system analysis</subject><subject>Control systems</subject><subject>Control theory. Systems</subject><subject>Damping</subject><subject>Distributed control</subject><subject>Elasticity</subject><subject>Exact sciences and technology</subject><subject>Feedback control</subject><subject>Stability</subject><subject>Stress</subject><subject>Transfer functions</subject><subject>Viscosity</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1988</creationdate><recordtype>article</recordtype><recordid>eNqF0E1LAzEQBuAgCtYqePa0BxE9bE2y-TxK8QsKHtRzSNMEImlTd1Kh_96ULXrsaRjmmZdhELokeEII1vd6QjQlSh-hEeFctZTT7hiNMCaq1VSJU3QG8FVbwRgZobv3YucxxbJtcmh-Irjsk4USXePyqvQ5NbCF4pdwjk6CTeAv9nWMPp8eP6Yv7ezt-XX6MGtdJ0RpuWJEWSmYxSFwxiST0ulAeQgLzYXEji-C81hTXxdUHXM170R1jIQFs90Y3Qy56z5_bzwUs6xX-ZTsyucNGKoxp0Lhw1AJQrXShyHHHZZ8B28H6PoM0Ptg1n1c2n5rCDa77xpthu9Wer3PtOBsCr1duQh_XmhNOykruxpY9N7_pw0ZvyH6fyc</recordid><startdate>19880401</startdate><enddate>19880401</enddate><creator>Skaar, S.B.</creator><creator>Michel, A.N.</creator><creator>Miller, R.K.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>FR3</scope><scope>JQ2</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19880401</creationdate><title>Stability of viscoelastic control systems</title><author>Skaar, S.B. ; Michel, A.N. ; Miller, R.K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c366t-58418a764a0ff5447477c9f25ffd95670c5dfce092ec36874758b3647441fd4a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1988</creationdate><topic>Applied sciences</topic><topic>Capacitive sensors</topic><topic>Computer science; control theory; systems</topic><topic>Control system analysis</topic><topic>Control systems</topic><topic>Control theory. Systems</topic><topic>Damping</topic><topic>Distributed control</topic><topic>Elasticity</topic><topic>Exact sciences and technology</topic><topic>Feedback control</topic><topic>Stability</topic><topic>Stress</topic><topic>Transfer functions</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Skaar, S.B.</creatorcontrib><creatorcontrib>Michel, A.N.</creatorcontrib><creatorcontrib>Miller, R.K.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Skaar, S.B.</au><au>Michel, A.N.</au><au>Miller, R.K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability of viscoelastic control systems</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>1988-04-01</date><risdate>1988</risdate><volume>33</volume><issue>4</issue><spage>348</spage><epage>357</epage><pages>348-357</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>Classical root locus plot analysis is adapted to some one-dimensional, controlled, distributed, viscoelastic structures. The constitutive law that is used for the viscoelastic material may be modeled with fractional order derivatives provided the control law(s) involve similar derivatives. Two sample one-dimensional structures and control systems are used to introduce the approach. A partial-differential-equation representation of each structure is used as well as Ritz approximation. The effect of error due to approximation on stability conclusions is discussed in the context of this comparison.< ></abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/9.192189</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9286 |
ispartof | IEEE transactions on automatic control, 1988-04, Vol.33 (4), p.348-357 |
issn | 0018-9286 1558-2523 |
language | eng |
recordid | cdi_pascalfrancis_primary_6992377 |
source | IEEE Electronic Library (IEL) |
subjects | Applied sciences Capacitive sensors Computer science control theory systems Control system analysis Control systems Control theory. Systems Damping Distributed control Elasticity Exact sciences and technology Feedback control Stability Stress Transfer functions Viscosity |
title | Stability of viscoelastic control systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T20%3A16%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20of%20viscoelastic%20control%20systems&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Skaar,%20S.B.&rft.date=1988-04-01&rft.volume=33&rft.issue=4&rft.spage=348&rft.epage=357&rft.pages=348-357&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/9.192189&rft_dat=%3Cproquest_RIE%3E29052680%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=25030759&rft_id=info:pmid/&rft_ieee_id=192189&rfr_iscdi=true |