Optimal strategies for scheduling checkpoints and preventive maintenance

At checkpoints during the operation of a computer, the state of the system is saved. Whenever a machine fails, it is repaired and then reset to the state saved at the latest checkpoint. In the present work, save times are known constants and repair times are random variables; failures are the epochs...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on reliability 1990-04, Vol.39 (1), p.9-18
Hauptverfasser: Coffman, E.G., Gilbert, E.N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 18
container_issue 1
container_start_page 9
container_title IEEE transactions on reliability
container_volume 39
creator Coffman, E.G.
Gilbert, E.N.
description At checkpoints during the operation of a computer, the state of the system is saved. Whenever a machine fails, it is repaired and then reset to the state saved at the latest checkpoint. In the present work, save times are known constants and repair times are random variables; failures are the epochs of a given renewal process. In scheduling the checkpoints, the cost of saves must be traded off against the cost of work lost when the computer fails. It is shown how to schedule checkpoints to minimize the mean total time to finish a given job. Similar optimization results are obtained for the tails of the distribution of the finishing time. Two variants of the basic model are considered. In one of the computer receives maintenance during each save; in the other it does not. Applications to the M/G/1 queuing system are touched on.< >
doi_str_mv 10.1109/24.52636
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_6941140</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>52636</ieee_id><sourcerecordid>29519241</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-b3407d933403e2e0a2284dc8aff8e5f0dfaaaebc8cb000fe2116f458d73fe62e3</originalsourceid><addsrcrecordid>eNqFkM9LwzAYhoMoOKvg1VsPIl46kzRpk6MMdcJgFz2HLP0yo11ak27gf2-0Y9ed3u_Hw3t4ELomeEoIlg-UTTmtyuoETQjnoiA1JadogjERheRUnqOLGD_TypgUEzRf9oPb6DaPQ9ADrB3E3HYhj-YDmm3r_DpPk_nqO-eHmGvf5H2AHfjB7SDf6HQFr72BS3RmdRvhap8Zen9-epvNi8Xy5XX2uChMWfGhWJUM140sU5RAAWtKBWuM0NYK4BY3VmsNKyPMCmNsgRJSWcZFU5cWKgplhu7G3j5031uIg9q4aKBttYduGxWVnEjKyHFQcMYqQY-DXDApaZ3A-xE0oYsxgFV9SO7CjyJY_clXlKl_-Qm93XfqaHRrQ1Lk4oGvJCMkGcjQzYg5ADh8x4pfqm-MNQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>25849927</pqid></control><display><type>article</type><title>Optimal strategies for scheduling checkpoints and preventive maintenance</title><source>IEEE Electronic Library (IEL)</source><creator>Coffman, E.G. ; Gilbert, E.N.</creator><creatorcontrib>Coffman, E.G. ; Gilbert, E.N.</creatorcontrib><description>At checkpoints during the operation of a computer, the state of the system is saved. Whenever a machine fails, it is repaired and then reset to the state saved at the latest checkpoint. In the present work, save times are known constants and repair times are random variables; failures are the epochs of a given renewal process. In scheduling the checkpoints, the cost of saves must be traded off against the cost of work lost when the computer fails. It is shown how to schedule checkpoints to minimize the mean total time to finish a given job. Similar optimization results are obtained for the tails of the distribution of the finishing time. Two variants of the basic model are considered. In one of the computer receives maintenance during each save; in the other it does not. Applications to the M/G/1 queuing system are touched on.&lt; &gt;</description><identifier>ISSN: 0018-9529</identifier><identifier>EISSN: 1558-1721</identifier><identifier>DOI: 10.1109/24.52636</identifier><identifier>CODEN: IERQAD</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Application software ; Applied sciences ; Checkpointing ; Computer applications ; Costs ; Electronics ; Exact sciences and technology ; Finishing ; Mathematical model ; Preventive maintenance ; Probability distribution ; Processor scheduling ; Random variables ; Testing, measurement, noise and reliability</subject><ispartof>IEEE transactions on reliability, 1990-04, Vol.39 (1), p.9-18</ispartof><rights>1990 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-b3407d933403e2e0a2284dc8aff8e5f0dfaaaebc8cb000fe2116f458d73fe62e3</citedby><cites>FETCH-LOGICAL-c365t-b3407d933403e2e0a2284dc8aff8e5f0dfaaaebc8cb000fe2116f458d73fe62e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/52636$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/52636$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=6941140$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Coffman, E.G.</creatorcontrib><creatorcontrib>Gilbert, E.N.</creatorcontrib><title>Optimal strategies for scheduling checkpoints and preventive maintenance</title><title>IEEE transactions on reliability</title><addtitle>TR</addtitle><description>At checkpoints during the operation of a computer, the state of the system is saved. Whenever a machine fails, it is repaired and then reset to the state saved at the latest checkpoint. In the present work, save times are known constants and repair times are random variables; failures are the epochs of a given renewal process. In scheduling the checkpoints, the cost of saves must be traded off against the cost of work lost when the computer fails. It is shown how to schedule checkpoints to minimize the mean total time to finish a given job. Similar optimization results are obtained for the tails of the distribution of the finishing time. Two variants of the basic model are considered. In one of the computer receives maintenance during each save; in the other it does not. Applications to the M/G/1 queuing system are touched on.&lt; &gt;</description><subject>Application software</subject><subject>Applied sciences</subject><subject>Checkpointing</subject><subject>Computer applications</subject><subject>Costs</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Finishing</subject><subject>Mathematical model</subject><subject>Preventive maintenance</subject><subject>Probability distribution</subject><subject>Processor scheduling</subject><subject>Random variables</subject><subject>Testing, measurement, noise and reliability</subject><issn>0018-9529</issn><issn>1558-1721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1990</creationdate><recordtype>article</recordtype><recordid>eNqFkM9LwzAYhoMoOKvg1VsPIl46kzRpk6MMdcJgFz2HLP0yo11ak27gf2-0Y9ed3u_Hw3t4ELomeEoIlg-UTTmtyuoETQjnoiA1JadogjERheRUnqOLGD_TypgUEzRf9oPb6DaPQ9ADrB3E3HYhj-YDmm3r_DpPk_nqO-eHmGvf5H2AHfjB7SDf6HQFr72BS3RmdRvhap8Zen9-epvNi8Xy5XX2uChMWfGhWJUM140sU5RAAWtKBWuM0NYK4BY3VmsNKyPMCmNsgRJSWcZFU5cWKgplhu7G3j5031uIg9q4aKBttYduGxWVnEjKyHFQcMYqQY-DXDApaZ3A-xE0oYsxgFV9SO7CjyJY_clXlKl_-Qm93XfqaHRrQ1Lk4oGvJCMkGcjQzYg5ADh8x4pfqm-MNQ</recordid><startdate>19900401</startdate><enddate>19900401</enddate><creator>Coffman, E.G.</creator><creator>Gilbert, E.N.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7SC</scope><scope>JQ2</scope><scope>L~C</scope><scope>L~D</scope><scope>7TB</scope><scope>FR3</scope></search><sort><creationdate>19900401</creationdate><title>Optimal strategies for scheduling checkpoints and preventive maintenance</title><author>Coffman, E.G. ; Gilbert, E.N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-b3407d933403e2e0a2284dc8aff8e5f0dfaaaebc8cb000fe2116f458d73fe62e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1990</creationdate><topic>Application software</topic><topic>Applied sciences</topic><topic>Checkpointing</topic><topic>Computer applications</topic><topic>Costs</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Finishing</topic><topic>Mathematical model</topic><topic>Preventive maintenance</topic><topic>Probability distribution</topic><topic>Processor scheduling</topic><topic>Random variables</topic><topic>Testing, measurement, noise and reliability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Coffman, E.G.</creatorcontrib><creatorcontrib>Gilbert, E.N.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on reliability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Coffman, E.G.</au><au>Gilbert, E.N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal strategies for scheduling checkpoints and preventive maintenance</atitle><jtitle>IEEE transactions on reliability</jtitle><stitle>TR</stitle><date>1990-04-01</date><risdate>1990</risdate><volume>39</volume><issue>1</issue><spage>9</spage><epage>18</epage><pages>9-18</pages><issn>0018-9529</issn><eissn>1558-1721</eissn><coden>IERQAD</coden><abstract>At checkpoints during the operation of a computer, the state of the system is saved. Whenever a machine fails, it is repaired and then reset to the state saved at the latest checkpoint. In the present work, save times are known constants and repair times are random variables; failures are the epochs of a given renewal process. In scheduling the checkpoints, the cost of saves must be traded off against the cost of work lost when the computer fails. It is shown how to schedule checkpoints to minimize the mean total time to finish a given job. Similar optimization results are obtained for the tails of the distribution of the finishing time. Two variants of the basic model are considered. In one of the computer receives maintenance during each save; in the other it does not. Applications to the M/G/1 queuing system are touched on.&lt; &gt;</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/24.52636</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9529
ispartof IEEE transactions on reliability, 1990-04, Vol.39 (1), p.9-18
issn 0018-9529
1558-1721
language eng
recordid cdi_pascalfrancis_primary_6941140
source IEEE Electronic Library (IEL)
subjects Application software
Applied sciences
Checkpointing
Computer applications
Costs
Electronics
Exact sciences and technology
Finishing
Mathematical model
Preventive maintenance
Probability distribution
Processor scheduling
Random variables
Testing, measurement, noise and reliability
title Optimal strategies for scheduling checkpoints and preventive maintenance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T15%3A59%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20strategies%20for%20scheduling%20checkpoints%20and%20preventive%20maintenance&rft.jtitle=IEEE%20transactions%20on%20reliability&rft.au=Coffman,%20E.G.&rft.date=1990-04-01&rft.volume=39&rft.issue=1&rft.spage=9&rft.epage=18&rft.pages=9-18&rft.issn=0018-9529&rft.eissn=1558-1721&rft.coden=IERQAD&rft_id=info:doi/10.1109/24.52636&rft_dat=%3Cproquest_RIE%3E29519241%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=25849927&rft_id=info:pmid/&rft_ieee_id=52636&rfr_iscdi=true