The dominant non-gibberellin-responding dwarf mutant (D8) of maize accumulates native gibberellins
The endogenous gibberellins (GAs) were examined from young vegetative shoots of the dominant mutant, Dwarf-8, a GA-nonresponder, and normal maize; GA44, GA17, GA19, GA20, GA29, GA1, and GA8, members of the early-13-hydroxylation pathway, were identified from both kinds of shoots by full-scan mass sp...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 1988-12, Vol.85 (23), p.9031-9035 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9035 |
---|---|
container_issue | 23 |
container_start_page | 9031 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 85 |
creator | Fujioka, S Yamane, H Spray, C.R Katsumi, M Phinney, B.O Gaskin, P MacMillan, J Takahashi, N |
description | The endogenous gibberellins (GAs) were examined from young vegetative shoots of the dominant mutant, Dwarf-8, a GA-nonresponder, and normal maize; GA44, GA17, GA19, GA20, GA29, GA1, and GA8, members of the early-13-hydroxylation pathway, were identified from both kinds of shoots by full-scan mass spectra and Kovats retention indices. In addition, we report the identification of 3-epi-GA1, GA3, GA4, GA5, GA7, GA9, GA12, GA15, GA24, GA34, and GA53 by using the same criteria. [1,7,12,18-14C4]GA$_{53}$ and -GA44, [17-2H2]GA19, and [17-13C,3H2]GA< latex>$_{20}$, -GA29, -GA1, -GA8, and -GA5 were used as internal standards to determine the endogenous levels of these GAs by measurement of isotope dilution, using capillary gas chromatography and selected ion monitoring. Shoots of Dwarf-8 accumulate relatively high levels of GA20, GA1, and GA8. The accumulation of GA1 appears to be related to gene dosage. Since Dwarf-8 contains the same pattern of GAs as normals (including GA1 and GA3), the genetic control point probably lies after GA1 (and GA3). Thus Dwarf-8 may be a GA receptor mutant or a mutant that controls a product downstream from the binding of the bioactive GA to a receptor. |
doi_str_mv | 10.1073/pnas.85.23.9031 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_6848610</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>32880</jstor_id><sourcerecordid>32880</sourcerecordid><originalsourceid>FETCH-LOGICAL-c598t-b7839d8ac2617c1dfe5ed25d6e612676380cd5521596874a05fbc51b2cf21b1b3</originalsourceid><addsrcrecordid>eNqF0U1v1DAQBmALgehSOCNxQDkgPg7Zju3YcQ4cUGkBqRIH2rPlOM7WVWIvtlM-fj0Ou91dJAQny5pnrHc8CD3FsMRQ05O1U3Ep2JLQZQMU30MLDA0uedXAfbQAIHUpKlIdoUcx3gBAwwQ8REeYs6YCwAvUXl6bovOjdcqlwnlXrmzbmmCGwboymLj2rrNuVXTfVOiLcUqze_1evCl8vir70xRK62mcBpVMLJxK9tYUB4_Ex-hBr4ZonmzPY3R1fnZ5-rG8-Pzh0-m7i1KzRqSyrQVtOqE04bjWuOsNMx1hHTccE15zKkB3jBHMGi7qSgHrW81wS3RPcItbeozebt5dT-1oOm1cCmqQ62BHFX5Ir6z8s-LstVz5W0kE4Yzn_lfb_uC_TiYmOdqo8wzKGT9FWVPKAIPAWb78p8SM8vy_IsOTDdTBxxhMv0uDQc4LlPMCpWCSUDkvMHc8Pxxi77cby-DFFqio1dAH5bSNO1cTyiiG_zEuKsF_s7uZ5xx31X0e2U_DkMz3dBDs7zKDZxtwE5MPO0GJELAv9spLtQo5ytUXIXLavPVfAdrawg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>15369408</pqid></control><display><type>article</type><title>The dominant non-gibberellin-responding dwarf mutant (D8) of maize accumulates native gibberellins</title><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Fujioka, S ; Yamane, H ; Spray, C.R ; Katsumi, M ; Phinney, B.O ; Gaskin, P ; MacMillan, J ; Takahashi, N</creator><creatorcontrib>Fujioka, S ; Yamane, H ; Spray, C.R ; Katsumi, M ; Phinney, B.O ; Gaskin, P ; MacMillan, J ; Takahashi, N</creatorcontrib><description>The endogenous gibberellins (GAs) were examined from young vegetative shoots of the dominant mutant, Dwarf-8, a GA-nonresponder, and normal maize; GA44, GA17, GA19, GA20, GA29, GA1, and GA8, members of the early-13-hydroxylation pathway, were identified from both kinds of shoots by full-scan mass spectra and Kovats retention indices. In addition, we report the identification of 3-epi-GA1, GA3, GA4, GA5, GA7, GA9, GA12, GA15, GA24, GA34, and GA53 by using the same criteria. [1,7,12,18-14C4]GA$_{53}$</l atex> and -GA44, [17-2H2]GA19, and [17-13C,3H2]GA< latex>$_{20}$, -GA29, -GA1, -GA8, and -GA5 were used as internal standards to determine the endogenous levels of these GAs by measurement of isotope dilution, using capillary gas chromatography and selected ion monitoring. Shoots of Dwarf-8 accumulate relatively high levels of GA20, GA1, and GA8. The accumulation of GA1 appears to be related to gene dosage. Since Dwarf-8 contains the same pattern of GAs as normals (including GA1 and GA3), the genetic control point probably lies after GA1 (and GA3). Thus Dwarf-8 may be a GA receptor mutant or a mutant that controls a product downstream from the binding of the bioactive GA to a receptor.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.85.23.9031</identifier><identifier>PMID: 16594001</identifier><identifier>CODEN: PNASA6</identifier><language>eng</language><publisher>Washington, DC: National Academy of Sciences of the United States of America</publisher><subject>ACIDO GIBERELICO ; Agronomy. Soil science and plant productions ; Atoms ; Biological and medical sciences ; Biological Sciences: Botany ; BIOSINTESIS ; BIOSYNTHESE ; BIOSYNTHESIS ; Classical and quantitative genetics. Population genetics. Molecular genetics ; Classical genetics, quantitative genetics, hybrids ; Corn ; Fundamental and applied biological sciences. Psychology ; Generalities. Genetics. Plant material ; Genetics and breeding of economic plants ; Genetics of eukaryotes. Biological and molecular evolution ; GIBBERELLINE ; Gibberellins ; Ion currents ; Ions ; Isotopes ; Molecules ; MUTANT ; MUTANTES ; MUTANTS ; Phenotypes ; Plant growth ; Plants ; Pteridophyta, spermatophyta ; STEMS ; TALLO ; TIGE ; Vegetals ; ZEA MAYS</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 1988-12, Vol.85 (23), p.9031-9035</ispartof><rights>1990 INIST-CNRS</rights><rights>1989 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c598t-b7839d8ac2617c1dfe5ed25d6e612676380cd5521596874a05fbc51b2cf21b1b3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/85/23.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/32880$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/32880$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27923,27924,53790,53792,58016,58249</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=6848610$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=7235310$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16594001$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fujioka, S</creatorcontrib><creatorcontrib>Yamane, H</creatorcontrib><creatorcontrib>Spray, C.R</creatorcontrib><creatorcontrib>Katsumi, M</creatorcontrib><creatorcontrib>Phinney, B.O</creatorcontrib><creatorcontrib>Gaskin, P</creatorcontrib><creatorcontrib>MacMillan, J</creatorcontrib><creatorcontrib>Takahashi, N</creatorcontrib><title>The dominant non-gibberellin-responding dwarf mutant (D8) of maize accumulates native gibberellins</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The endogenous gibberellins (GAs) were examined from young vegetative shoots of the dominant mutant, Dwarf-8, a GA-nonresponder, and normal maize; GA44, GA17, GA19, GA20, GA29, GA1, and GA8, members of the early-13-hydroxylation pathway, were identified from both kinds of shoots by full-scan mass spectra and Kovats retention indices. In addition, we report the identification of 3-epi-GA1, GA3, GA4, GA5, GA7, GA9, GA12, GA15, GA24, GA34, and GA53 by using the same criteria. [1,7,12,18-14C4]GA$_{53}$</l atex> and -GA44, [17-2H2]GA19, and [17-13C,3H2]GA< latex>$_{20}$, -GA29, -GA1, -GA8, and -GA5 were used as internal standards to determine the endogenous levels of these GAs by measurement of isotope dilution, using capillary gas chromatography and selected ion monitoring. Shoots of Dwarf-8 accumulate relatively high levels of GA20, GA1, and GA8. The accumulation of GA1 appears to be related to gene dosage. Since Dwarf-8 contains the same pattern of GAs as normals (including GA1 and GA3), the genetic control point probably lies after GA1 (and GA3). Thus Dwarf-8 may be a GA receptor mutant or a mutant that controls a product downstream from the binding of the bioactive GA to a receptor.</description><subject>ACIDO GIBERELICO</subject><subject>Agronomy. Soil science and plant productions</subject><subject>Atoms</subject><subject>Biological and medical sciences</subject><subject>Biological Sciences: Botany</subject><subject>BIOSINTESIS</subject><subject>BIOSYNTHESE</subject><subject>BIOSYNTHESIS</subject><subject>Classical and quantitative genetics. Population genetics. Molecular genetics</subject><subject>Classical genetics, quantitative genetics, hybrids</subject><subject>Corn</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Generalities. Genetics. Plant material</subject><subject>Genetics and breeding of economic plants</subject><subject>Genetics of eukaryotes. Biological and molecular evolution</subject><subject>GIBBERELLINE</subject><subject>Gibberellins</subject><subject>Ion currents</subject><subject>Ions</subject><subject>Isotopes</subject><subject>Molecules</subject><subject>MUTANT</subject><subject>MUTANTES</subject><subject>MUTANTS</subject><subject>Phenotypes</subject><subject>Plant growth</subject><subject>Plants</subject><subject>Pteridophyta, spermatophyta</subject><subject>STEMS</subject><subject>TALLO</subject><subject>TIGE</subject><subject>Vegetals</subject><subject>ZEA MAYS</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1988</creationdate><recordtype>article</recordtype><recordid>eNqF0U1v1DAQBmALgehSOCNxQDkgPg7Zju3YcQ4cUGkBqRIH2rPlOM7WVWIvtlM-fj0Ou91dJAQny5pnrHc8CD3FsMRQ05O1U3Ep2JLQZQMU30MLDA0uedXAfbQAIHUpKlIdoUcx3gBAwwQ8REeYs6YCwAvUXl6bovOjdcqlwnlXrmzbmmCGwboymLj2rrNuVXTfVOiLcUqze_1evCl8vir70xRK62mcBpVMLJxK9tYUB4_Ex-hBr4ZonmzPY3R1fnZ5-rG8-Pzh0-m7i1KzRqSyrQVtOqE04bjWuOsNMx1hHTccE15zKkB3jBHMGi7qSgHrW81wS3RPcItbeozebt5dT-1oOm1cCmqQ62BHFX5Ir6z8s-LstVz5W0kE4Yzn_lfb_uC_TiYmOdqo8wzKGT9FWVPKAIPAWb78p8SM8vy_IsOTDdTBxxhMv0uDQc4LlPMCpWCSUDkvMHc8Pxxi77cby-DFFqio1dAH5bSNO1cTyiiG_zEuKsF_s7uZ5xx31X0e2U_DkMz3dBDs7zKDZxtwE5MPO0GJELAv9spLtQo5ytUXIXLavPVfAdrawg</recordid><startdate>19881201</startdate><enddate>19881201</enddate><creator>Fujioka, S</creator><creator>Yamane, H</creator><creator>Spray, C.R</creator><creator>Katsumi, M</creator><creator>Phinney, B.O</creator><creator>Gaskin, P</creator><creator>MacMillan, J</creator><creator>Takahashi, N</creator><general>National Academy of Sciences of the United States of America</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19881201</creationdate><title>The dominant non-gibberellin-responding dwarf mutant (D8) of maize accumulates native gibberellins</title><author>Fujioka, S ; Yamane, H ; Spray, C.R ; Katsumi, M ; Phinney, B.O ; Gaskin, P ; MacMillan, J ; Takahashi, N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c598t-b7839d8ac2617c1dfe5ed25d6e612676380cd5521596874a05fbc51b2cf21b1b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1988</creationdate><topic>ACIDO GIBERELICO</topic><topic>Agronomy. Soil science and plant productions</topic><topic>Atoms</topic><topic>Biological and medical sciences</topic><topic>Biological Sciences: Botany</topic><topic>BIOSINTESIS</topic><topic>BIOSYNTHESE</topic><topic>BIOSYNTHESIS</topic><topic>Classical and quantitative genetics. Population genetics. Molecular genetics</topic><topic>Classical genetics, quantitative genetics, hybrids</topic><topic>Corn</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Generalities. Genetics. Plant material</topic><topic>Genetics and breeding of economic plants</topic><topic>Genetics of eukaryotes. Biological and molecular evolution</topic><topic>GIBBERELLINE</topic><topic>Gibberellins</topic><topic>Ion currents</topic><topic>Ions</topic><topic>Isotopes</topic><topic>Molecules</topic><topic>MUTANT</topic><topic>MUTANTES</topic><topic>MUTANTS</topic><topic>Phenotypes</topic><topic>Plant growth</topic><topic>Plants</topic><topic>Pteridophyta, spermatophyta</topic><topic>STEMS</topic><topic>TALLO</topic><topic>TIGE</topic><topic>Vegetals</topic><topic>ZEA MAYS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fujioka, S</creatorcontrib><creatorcontrib>Yamane, H</creatorcontrib><creatorcontrib>Spray, C.R</creatorcontrib><creatorcontrib>Katsumi, M</creatorcontrib><creatorcontrib>Phinney, B.O</creatorcontrib><creatorcontrib>Gaskin, P</creatorcontrib><creatorcontrib>MacMillan, J</creatorcontrib><creatorcontrib>Takahashi, N</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fujioka, S</au><au>Yamane, H</au><au>Spray, C.R</au><au>Katsumi, M</au><au>Phinney, B.O</au><au>Gaskin, P</au><au>MacMillan, J</au><au>Takahashi, N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The dominant non-gibberellin-responding dwarf mutant (D8) of maize accumulates native gibberellins</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>1988-12-01</date><risdate>1988</risdate><volume>85</volume><issue>23</issue><spage>9031</spage><epage>9035</epage><pages>9031-9035</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><coden>PNASA6</coden><abstract>The endogenous gibberellins (GAs) were examined from young vegetative shoots of the dominant mutant, Dwarf-8, a GA-nonresponder, and normal maize; GA44, GA17, GA19, GA20, GA29, GA1, and GA8, members of the early-13-hydroxylation pathway, were identified from both kinds of shoots by full-scan mass spectra and Kovats retention indices. In addition, we report the identification of 3-epi-GA1, GA3, GA4, GA5, GA7, GA9, GA12, GA15, GA24, GA34, and GA53 by using the same criteria. [1,7,12,18-14C4]GA$_{53}$</l atex> and -GA44, [17-2H2]GA19, and [17-13C,3H2]GA< latex>$_{20}$, -GA29, -GA1, -GA8, and -GA5 were used as internal standards to determine the endogenous levels of these GAs by measurement of isotope dilution, using capillary gas chromatography and selected ion monitoring. Shoots of Dwarf-8 accumulate relatively high levels of GA20, GA1, and GA8. The accumulation of GA1 appears to be related to gene dosage. Since Dwarf-8 contains the same pattern of GAs as normals (including GA1 and GA3), the genetic control point probably lies after GA1 (and GA3). Thus Dwarf-8 may be a GA receptor mutant or a mutant that controls a product downstream from the binding of the bioactive GA to a receptor.</abstract><cop>Washington, DC</cop><pub>National Academy of Sciences of the United States of America</pub><pmid>16594001</pmid><doi>10.1073/pnas.85.23.9031</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 1988-12, Vol.85 (23), p.9031-9035 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pascalfrancis_primary_6848610 |
source | JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | ACIDO GIBERELICO Agronomy. Soil science and plant productions Atoms Biological and medical sciences Biological Sciences: Botany BIOSINTESIS BIOSYNTHESE BIOSYNTHESIS Classical and quantitative genetics. Population genetics. Molecular genetics Classical genetics, quantitative genetics, hybrids Corn Fundamental and applied biological sciences. Psychology Generalities. Genetics. Plant material Genetics and breeding of economic plants Genetics of eukaryotes. Biological and molecular evolution GIBBERELLINE Gibberellins Ion currents Ions Isotopes Molecules MUTANT MUTANTES MUTANTS Phenotypes Plant growth Plants Pteridophyta, spermatophyta STEMS TALLO TIGE Vegetals ZEA MAYS |
title | The dominant non-gibberellin-responding dwarf mutant (D8) of maize accumulates native gibberellins |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T16%3A55%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20dominant%20non-gibberellin-responding%20dwarf%20mutant%20(D8)%20of%20maize%20accumulates%20native%20gibberellins&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Fujioka,%20S&rft.date=1988-12-01&rft.volume=85&rft.issue=23&rft.spage=9031&rft.epage=9035&rft.pages=9031-9035&rft.issn=0027-8424&rft.eissn=1091-6490&rft.coden=PNASA6&rft_id=info:doi/10.1073/pnas.85.23.9031&rft_dat=%3Cjstor_pasca%3E32880%3C/jstor_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=15369408&rft_id=info:pmid/16594001&rft_jstor_id=32880&rfr_iscdi=true |