Midgap states in a-Si:H and a-SiGe:H p-i-n solar cells and Schottky junctions by capacitance techniques

The midgap density of states (MGDOS) in a-SiGe:H alloys is investigated by capacitance measurements on p-i-n solar cells. Past work on thick a-Si:H Schottky barriers is extended to thin a-SiGe:H p-i-n cells. Four methods of determining the MGDOS from the measured capacitance are described, and each...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 1992-06, Vol.71 (12), p.5941-5951
Hauptverfasser: HEGEDUS, S. S, FAGEN, E. A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5951
container_issue 12
container_start_page 5941
container_title Journal of applied physics
container_volume 71
creator HEGEDUS, S. S
FAGEN, E. A
description The midgap density of states (MGDOS) in a-SiGe:H alloys is investigated by capacitance measurements on p-i-n solar cells. Past work on thick a-Si:H Schottky barriers is extended to thin a-SiGe:H p-i-n cells. Four methods of determining the MGDOS from the measured capacitance are described, and each is applied to two p-i-n devices having 0% and 62% Ge in the i layers, respectively. The first method involves fitting an equivalent circuit model to the measured admittance. Close agreement is found over a wide range of temperature and frequency. The single junction model is shown to apply equally well to p-i-n and Schottky diodes, justifying the neglect of the n-i junction and thin doped layers in the p-i-n admittance analysis. A second method determines g0 from the limiting capacitance at high temperature. The third and fourth methods extract g0 from the dependence of capacitance on voltage bias. One of these is novel, presented here for the first time. Thus, a unique feature of this study is the application of several different capacitance methods to standard p-i-n solar cell devices. Agreement within ±25% is found among the values of the MGDOS from the four methods. The MGDOS increases exponentially from (1–2)×1016 to (3–4)×1017/cm3 eV as the Ge increases from 0% to 62%, in general agreement with results of others.
doi_str_mv 10.1063/1.350444
format Article
fullrecord <record><control><sourceid>pascalfrancis_osti_</sourceid><recordid>TN_cdi_pascalfrancis_primary_5475529</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>5475529</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-513004d83b1877656a46f3176ae0e84239061bccf5dc582c142d7da2bd747fd83</originalsourceid><addsrcrecordid>eNo9kM1OwzAQhC0EEqUg8QgW4sDFxb-xww1V0CIVcSicI2fjtC7BCbF76NsTGsRpdzXfrmYHoWtGZ4xm4p7NhKJSyhM0YdTkRCtFT9GEUs6IyXV-ji5i3FHKmBH5BG1efbWxHY7JJhexD9iStX9YYhuqY7tww9ARTwKObWN7DK5p4lFew7ZN6fOAd_sAybch4vKAwXYWfLIBHE4OtsF_7128RGe1baK7-qtT9PH89D5fktXb4mX-uCIgTJ6IYoJSWRlRMqN1pjIrs1ownVlHnZFc5DRjJUCtKlCGA5O80pXlZaWlroe9KboZ77Yx-SIORgYL0IbgIBWaG84ZHaC7EYK-jbF3ddH1_sv2h4LR4jfFghVjigN6O6KdjWCbuh_-8vGfV3LIl-fiB8Wzbvk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Midgap states in a-Si:H and a-SiGe:H p-i-n solar cells and Schottky junctions by capacitance techniques</title><source>AIP Digital Archive</source><creator>HEGEDUS, S. S ; FAGEN, E. A</creator><creatorcontrib>HEGEDUS, S. S ; FAGEN, E. A</creatorcontrib><description>The midgap density of states (MGDOS) in a-SiGe:H alloys is investigated by capacitance measurements on p-i-n solar cells. Past work on thick a-Si:H Schottky barriers is extended to thin a-SiGe:H p-i-n cells. Four methods of determining the MGDOS from the measured capacitance are described, and each is applied to two p-i-n devices having 0% and 62% Ge in the i layers, respectively. The first method involves fitting an equivalent circuit model to the measured admittance. Close agreement is found over a wide range of temperature and frequency. The single junction model is shown to apply equally well to p-i-n and Schottky diodes, justifying the neglect of the n-i junction and thin doped layers in the p-i-n admittance analysis. A second method determines g0 from the limiting capacitance at high temperature. The third and fourth methods extract g0 from the dependence of capacitance on voltage bias. One of these is novel, presented here for the first time. Thus, a unique feature of this study is the application of several different capacitance methods to standard p-i-n solar cell devices. Agreement within ±25% is found among the values of the MGDOS from the four methods. The MGDOS increases exponentially from (1–2)×1016 to (3–4)×1017/cm3 eV as the Ge increases from 0% to 62%, in general agreement with results of others.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.350444</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Woodbury, NY: American Institute of Physics</publisher><subject>AMORPHOUS STATE ; Applied sciences ; DIRECT ENERGY CONVERTERS ; ELEMENTS ; Energy ; ENERGY GAP ; ENERGY-LEVEL DENSITY ; Exact sciences and technology ; GERMANIUM COMPOUNDS ; GERMANIUM SILICIDES ; HYDROGEN ADDITIONS ; Natural energy ; PHOTOELECTRIC CELLS ; PHOTOVOLTAIC CELLS ; Photovoltaic conversion ; SCHOTTKY BARRIER DIODES ; SEMICONDUCTOR DEVICES ; SEMICONDUCTOR DIODES ; SEMIMETALS ; SILICIDES ; SILICON ; SILICON COMPOUNDS ; SOLAR CELLS ; Solar cells. Photoelectrochemical cells ; SOLAR ENERGY ; SOLAR EQUIPMENT 140501 -- Solar Energy Conversion-- Photovoltaic Conversion</subject><ispartof>Journal of applied physics, 1992-06, Vol.71 (12), p.5941-5951</ispartof><rights>1992 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-513004d83b1877656a46f3176ae0e84239061bccf5dc582c142d7da2bd747fd83</citedby><cites>FETCH-LOGICAL-c389t-513004d83b1877656a46f3176ae0e84239061bccf5dc582c142d7da2bd747fd83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,781,785,886,27926,27927</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=5475529$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/7282210$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>HEGEDUS, S. S</creatorcontrib><creatorcontrib>FAGEN, E. A</creatorcontrib><title>Midgap states in a-Si:H and a-SiGe:H p-i-n solar cells and Schottky junctions by capacitance techniques</title><title>Journal of applied physics</title><description>The midgap density of states (MGDOS) in a-SiGe:H alloys is investigated by capacitance measurements on p-i-n solar cells. Past work on thick a-Si:H Schottky barriers is extended to thin a-SiGe:H p-i-n cells. Four methods of determining the MGDOS from the measured capacitance are described, and each is applied to two p-i-n devices having 0% and 62% Ge in the i layers, respectively. The first method involves fitting an equivalent circuit model to the measured admittance. Close agreement is found over a wide range of temperature and frequency. The single junction model is shown to apply equally well to p-i-n and Schottky diodes, justifying the neglect of the n-i junction and thin doped layers in the p-i-n admittance analysis. A second method determines g0 from the limiting capacitance at high temperature. The third and fourth methods extract g0 from the dependence of capacitance on voltage bias. One of these is novel, presented here for the first time. Thus, a unique feature of this study is the application of several different capacitance methods to standard p-i-n solar cell devices. Agreement within ±25% is found among the values of the MGDOS from the four methods. The MGDOS increases exponentially from (1–2)×1016 to (3–4)×1017/cm3 eV as the Ge increases from 0% to 62%, in general agreement with results of others.</description><subject>AMORPHOUS STATE</subject><subject>Applied sciences</subject><subject>DIRECT ENERGY CONVERTERS</subject><subject>ELEMENTS</subject><subject>Energy</subject><subject>ENERGY GAP</subject><subject>ENERGY-LEVEL DENSITY</subject><subject>Exact sciences and technology</subject><subject>GERMANIUM COMPOUNDS</subject><subject>GERMANIUM SILICIDES</subject><subject>HYDROGEN ADDITIONS</subject><subject>Natural energy</subject><subject>PHOTOELECTRIC CELLS</subject><subject>PHOTOVOLTAIC CELLS</subject><subject>Photovoltaic conversion</subject><subject>SCHOTTKY BARRIER DIODES</subject><subject>SEMICONDUCTOR DEVICES</subject><subject>SEMICONDUCTOR DIODES</subject><subject>SEMIMETALS</subject><subject>SILICIDES</subject><subject>SILICON</subject><subject>SILICON COMPOUNDS</subject><subject>SOLAR CELLS</subject><subject>Solar cells. Photoelectrochemical cells</subject><subject>SOLAR ENERGY</subject><subject>SOLAR EQUIPMENT 140501 -- Solar Energy Conversion-- Photovoltaic Conversion</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><recordid>eNo9kM1OwzAQhC0EEqUg8QgW4sDFxb-xww1V0CIVcSicI2fjtC7BCbF76NsTGsRpdzXfrmYHoWtGZ4xm4p7NhKJSyhM0YdTkRCtFT9GEUs6IyXV-ji5i3FHKmBH5BG1efbWxHY7JJhexD9iStX9YYhuqY7tww9ARTwKObWN7DK5p4lFew7ZN6fOAd_sAybch4vKAwXYWfLIBHE4OtsF_7128RGe1baK7-qtT9PH89D5fktXb4mX-uCIgTJ6IYoJSWRlRMqN1pjIrs1ownVlHnZFc5DRjJUCtKlCGA5O80pXlZaWlroe9KboZ77Yx-SIORgYL0IbgIBWaG84ZHaC7EYK-jbF3ddH1_sv2h4LR4jfFghVjigN6O6KdjWCbuh_-8vGfV3LIl-fiB8Wzbvk</recordid><startdate>19920615</startdate><enddate>19920615</enddate><creator>HEGEDUS, S. S</creator><creator>FAGEN, E. A</creator><general>American Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>19920615</creationdate><title>Midgap states in a-Si:H and a-SiGe:H p-i-n solar cells and Schottky junctions by capacitance techniques</title><author>HEGEDUS, S. S ; FAGEN, E. A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-513004d83b1877656a46f3176ae0e84239061bccf5dc582c142d7da2bd747fd83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>AMORPHOUS STATE</topic><topic>Applied sciences</topic><topic>DIRECT ENERGY CONVERTERS</topic><topic>ELEMENTS</topic><topic>Energy</topic><topic>ENERGY GAP</topic><topic>ENERGY-LEVEL DENSITY</topic><topic>Exact sciences and technology</topic><topic>GERMANIUM COMPOUNDS</topic><topic>GERMANIUM SILICIDES</topic><topic>HYDROGEN ADDITIONS</topic><topic>Natural energy</topic><topic>PHOTOELECTRIC CELLS</topic><topic>PHOTOVOLTAIC CELLS</topic><topic>Photovoltaic conversion</topic><topic>SCHOTTKY BARRIER DIODES</topic><topic>SEMICONDUCTOR DEVICES</topic><topic>SEMICONDUCTOR DIODES</topic><topic>SEMIMETALS</topic><topic>SILICIDES</topic><topic>SILICON</topic><topic>SILICON COMPOUNDS</topic><topic>SOLAR CELLS</topic><topic>Solar cells. Photoelectrochemical cells</topic><topic>SOLAR ENERGY</topic><topic>SOLAR EQUIPMENT 140501 -- Solar Energy Conversion-- Photovoltaic Conversion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>HEGEDUS, S. S</creatorcontrib><creatorcontrib>FAGEN, E. A</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>HEGEDUS, S. S</au><au>FAGEN, E. A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Midgap states in a-Si:H and a-SiGe:H p-i-n solar cells and Schottky junctions by capacitance techniques</atitle><jtitle>Journal of applied physics</jtitle><date>1992-06-15</date><risdate>1992</risdate><volume>71</volume><issue>12</issue><spage>5941</spage><epage>5951</epage><pages>5941-5951</pages><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>The midgap density of states (MGDOS) in a-SiGe:H alloys is investigated by capacitance measurements on p-i-n solar cells. Past work on thick a-Si:H Schottky barriers is extended to thin a-SiGe:H p-i-n cells. Four methods of determining the MGDOS from the measured capacitance are described, and each is applied to two p-i-n devices having 0% and 62% Ge in the i layers, respectively. The first method involves fitting an equivalent circuit model to the measured admittance. Close agreement is found over a wide range of temperature and frequency. The single junction model is shown to apply equally well to p-i-n and Schottky diodes, justifying the neglect of the n-i junction and thin doped layers in the p-i-n admittance analysis. A second method determines g0 from the limiting capacitance at high temperature. The third and fourth methods extract g0 from the dependence of capacitance on voltage bias. One of these is novel, presented here for the first time. Thus, a unique feature of this study is the application of several different capacitance methods to standard p-i-n solar cell devices. Agreement within ±25% is found among the values of the MGDOS from the four methods. The MGDOS increases exponentially from (1–2)×1016 to (3–4)×1017/cm3 eV as the Ge increases from 0% to 62%, in general agreement with results of others.</abstract><cop>Woodbury, NY</cop><pub>American Institute of Physics</pub><doi>10.1063/1.350444</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 1992-06, Vol.71 (12), p.5941-5951
issn 0021-8979
1089-7550
language eng
recordid cdi_pascalfrancis_primary_5475529
source AIP Digital Archive
subjects AMORPHOUS STATE
Applied sciences
DIRECT ENERGY CONVERTERS
ELEMENTS
Energy
ENERGY GAP
ENERGY-LEVEL DENSITY
Exact sciences and technology
GERMANIUM COMPOUNDS
GERMANIUM SILICIDES
HYDROGEN ADDITIONS
Natural energy
PHOTOELECTRIC CELLS
PHOTOVOLTAIC CELLS
Photovoltaic conversion
SCHOTTKY BARRIER DIODES
SEMICONDUCTOR DEVICES
SEMICONDUCTOR DIODES
SEMIMETALS
SILICIDES
SILICON
SILICON COMPOUNDS
SOLAR CELLS
Solar cells. Photoelectrochemical cells
SOLAR ENERGY
SOLAR EQUIPMENT 140501 -- Solar Energy Conversion-- Photovoltaic Conversion
title Midgap states in a-Si:H and a-SiGe:H p-i-n solar cells and Schottky junctions by capacitance techniques
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T18%3A26%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Midgap%20states%20in%20a-Si:H%20and%20a-SiGe:H%20p-i-n%20solar%20cells%20and%20Schottky%20junctions%20by%20capacitance%20techniques&rft.jtitle=Journal%20of%20applied%20physics&rft.au=HEGEDUS,%20S.%20S&rft.date=1992-06-15&rft.volume=71&rft.issue=12&rft.spage=5941&rft.epage=5951&rft.pages=5941-5951&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/1.350444&rft_dat=%3Cpascalfrancis_osti_%3E5475529%3C/pascalfrancis_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true