Midgap states in a-Si:H and a-SiGe:H p-i-n solar cells and Schottky junctions by capacitance techniques
The midgap density of states (MGDOS) in a-SiGe:H alloys is investigated by capacitance measurements on p-i-n solar cells. Past work on thick a-Si:H Schottky barriers is extended to thin a-SiGe:H p-i-n cells. Four methods of determining the MGDOS from the measured capacitance are described, and each...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 1992-06, Vol.71 (12), p.5941-5951 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5951 |
---|---|
container_issue | 12 |
container_start_page | 5941 |
container_title | Journal of applied physics |
container_volume | 71 |
creator | HEGEDUS, S. S FAGEN, E. A |
description | The midgap density of states (MGDOS) in a-SiGe:H alloys is investigated by capacitance measurements on p-i-n solar cells. Past work on thick a-Si:H Schottky barriers is extended to thin a-SiGe:H p-i-n cells. Four methods of determining the MGDOS from the measured capacitance are described, and each is applied to two p-i-n devices having 0% and 62% Ge in the i layers, respectively. The first method involves fitting an equivalent circuit model to the measured admittance. Close agreement is found over a wide range of temperature and frequency. The single junction model is shown to apply equally well to p-i-n and Schottky diodes, justifying the neglect of the n-i junction and thin doped layers in the p-i-n admittance analysis. A second method determines g0 from the limiting capacitance at high temperature. The third and fourth methods extract g0 from the dependence of capacitance on voltage bias. One of these is novel, presented here for the first time. Thus, a unique feature of this study is the application of several different capacitance methods to standard p-i-n solar cell devices. Agreement within ±25% is found among the values of the MGDOS from the four methods. The MGDOS increases exponentially from (1–2)×1016 to (3–4)×1017/cm3 eV as the Ge increases from 0% to 62%, in general agreement with results of others. |
doi_str_mv | 10.1063/1.350444 |
format | Article |
fullrecord | <record><control><sourceid>pascalfrancis_osti_</sourceid><recordid>TN_cdi_pascalfrancis_primary_5475529</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>5475529</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-513004d83b1877656a46f3176ae0e84239061bccf5dc582c142d7da2bd747fd83</originalsourceid><addsrcrecordid>eNo9kM1OwzAQhC0EEqUg8QgW4sDFxb-xww1V0CIVcSicI2fjtC7BCbF76NsTGsRpdzXfrmYHoWtGZ4xm4p7NhKJSyhM0YdTkRCtFT9GEUs6IyXV-ji5i3FHKmBH5BG1efbWxHY7JJhexD9iStX9YYhuqY7tww9ARTwKObWN7DK5p4lFew7ZN6fOAd_sAybch4vKAwXYWfLIBHE4OtsF_7128RGe1baK7-qtT9PH89D5fktXb4mX-uCIgTJ6IYoJSWRlRMqN1pjIrs1ownVlHnZFc5DRjJUCtKlCGA5O80pXlZaWlroe9KboZ77Yx-SIORgYL0IbgIBWaG84ZHaC7EYK-jbF3ddH1_sv2h4LR4jfFghVjigN6O6KdjWCbuh_-8vGfV3LIl-fiB8Wzbvk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Midgap states in a-Si:H and a-SiGe:H p-i-n solar cells and Schottky junctions by capacitance techniques</title><source>AIP Digital Archive</source><creator>HEGEDUS, S. S ; FAGEN, E. A</creator><creatorcontrib>HEGEDUS, S. S ; FAGEN, E. A</creatorcontrib><description>The midgap density of states (MGDOS) in a-SiGe:H alloys is investigated by capacitance measurements on p-i-n solar cells. Past work on thick a-Si:H Schottky barriers is extended to thin a-SiGe:H p-i-n cells. Four methods of determining the MGDOS from the measured capacitance are described, and each is applied to two p-i-n devices having 0% and 62% Ge in the i layers, respectively. The first method involves fitting an equivalent circuit model to the measured admittance. Close agreement is found over a wide range of temperature and frequency. The single junction model is shown to apply equally well to p-i-n and Schottky diodes, justifying the neglect of the n-i junction and thin doped layers in the p-i-n admittance analysis. A second method determines g0 from the limiting capacitance at high temperature. The third and fourth methods extract g0 from the dependence of capacitance on voltage bias. One of these is novel, presented here for the first time. Thus, a unique feature of this study is the application of several different capacitance methods to standard p-i-n solar cell devices. Agreement within ±25% is found among the values of the MGDOS from the four methods. The MGDOS increases exponentially from (1–2)×1016 to (3–4)×1017/cm3 eV as the Ge increases from 0% to 62%, in general agreement with results of others.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.350444</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Woodbury, NY: American Institute of Physics</publisher><subject>AMORPHOUS STATE ; Applied sciences ; DIRECT ENERGY CONVERTERS ; ELEMENTS ; Energy ; ENERGY GAP ; ENERGY-LEVEL DENSITY ; Exact sciences and technology ; GERMANIUM COMPOUNDS ; GERMANIUM SILICIDES ; HYDROGEN ADDITIONS ; Natural energy ; PHOTOELECTRIC CELLS ; PHOTOVOLTAIC CELLS ; Photovoltaic conversion ; SCHOTTKY BARRIER DIODES ; SEMICONDUCTOR DEVICES ; SEMICONDUCTOR DIODES ; SEMIMETALS ; SILICIDES ; SILICON ; SILICON COMPOUNDS ; SOLAR CELLS ; Solar cells. Photoelectrochemical cells ; SOLAR ENERGY ; SOLAR EQUIPMENT 140501 -- Solar Energy Conversion-- Photovoltaic Conversion</subject><ispartof>Journal of applied physics, 1992-06, Vol.71 (12), p.5941-5951</ispartof><rights>1992 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-513004d83b1877656a46f3176ae0e84239061bccf5dc582c142d7da2bd747fd83</citedby><cites>FETCH-LOGICAL-c389t-513004d83b1877656a46f3176ae0e84239061bccf5dc582c142d7da2bd747fd83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,781,785,886,27926,27927</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=5475529$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/7282210$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>HEGEDUS, S. S</creatorcontrib><creatorcontrib>FAGEN, E. A</creatorcontrib><title>Midgap states in a-Si:H and a-SiGe:H p-i-n solar cells and Schottky junctions by capacitance techniques</title><title>Journal of applied physics</title><description>The midgap density of states (MGDOS) in a-SiGe:H alloys is investigated by capacitance measurements on p-i-n solar cells. Past work on thick a-Si:H Schottky barriers is extended to thin a-SiGe:H p-i-n cells. Four methods of determining the MGDOS from the measured capacitance are described, and each is applied to two p-i-n devices having 0% and 62% Ge in the i layers, respectively. The first method involves fitting an equivalent circuit model to the measured admittance. Close agreement is found over a wide range of temperature and frequency. The single junction model is shown to apply equally well to p-i-n and Schottky diodes, justifying the neglect of the n-i junction and thin doped layers in the p-i-n admittance analysis. A second method determines g0 from the limiting capacitance at high temperature. The third and fourth methods extract g0 from the dependence of capacitance on voltage bias. One of these is novel, presented here for the first time. Thus, a unique feature of this study is the application of several different capacitance methods to standard p-i-n solar cell devices. Agreement within ±25% is found among the values of the MGDOS from the four methods. The MGDOS increases exponentially from (1–2)×1016 to (3–4)×1017/cm3 eV as the Ge increases from 0% to 62%, in general agreement with results of others.</description><subject>AMORPHOUS STATE</subject><subject>Applied sciences</subject><subject>DIRECT ENERGY CONVERTERS</subject><subject>ELEMENTS</subject><subject>Energy</subject><subject>ENERGY GAP</subject><subject>ENERGY-LEVEL DENSITY</subject><subject>Exact sciences and technology</subject><subject>GERMANIUM COMPOUNDS</subject><subject>GERMANIUM SILICIDES</subject><subject>HYDROGEN ADDITIONS</subject><subject>Natural energy</subject><subject>PHOTOELECTRIC CELLS</subject><subject>PHOTOVOLTAIC CELLS</subject><subject>Photovoltaic conversion</subject><subject>SCHOTTKY BARRIER DIODES</subject><subject>SEMICONDUCTOR DEVICES</subject><subject>SEMICONDUCTOR DIODES</subject><subject>SEMIMETALS</subject><subject>SILICIDES</subject><subject>SILICON</subject><subject>SILICON COMPOUNDS</subject><subject>SOLAR CELLS</subject><subject>Solar cells. Photoelectrochemical cells</subject><subject>SOLAR ENERGY</subject><subject>SOLAR EQUIPMENT 140501 -- Solar Energy Conversion-- Photovoltaic Conversion</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><recordid>eNo9kM1OwzAQhC0EEqUg8QgW4sDFxb-xww1V0CIVcSicI2fjtC7BCbF76NsTGsRpdzXfrmYHoWtGZ4xm4p7NhKJSyhM0YdTkRCtFT9GEUs6IyXV-ji5i3FHKmBH5BG1efbWxHY7JJhexD9iStX9YYhuqY7tww9ARTwKObWN7DK5p4lFew7ZN6fOAd_sAybch4vKAwXYWfLIBHE4OtsF_7128RGe1baK7-qtT9PH89D5fktXb4mX-uCIgTJ6IYoJSWRlRMqN1pjIrs1ownVlHnZFc5DRjJUCtKlCGA5O80pXlZaWlroe9KboZ77Yx-SIORgYL0IbgIBWaG84ZHaC7EYK-jbF3ddH1_sv2h4LR4jfFghVjigN6O6KdjWCbuh_-8vGfV3LIl-fiB8Wzbvk</recordid><startdate>19920615</startdate><enddate>19920615</enddate><creator>HEGEDUS, S. S</creator><creator>FAGEN, E. A</creator><general>American Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>19920615</creationdate><title>Midgap states in a-Si:H and a-SiGe:H p-i-n solar cells and Schottky junctions by capacitance techniques</title><author>HEGEDUS, S. S ; FAGEN, E. A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-513004d83b1877656a46f3176ae0e84239061bccf5dc582c142d7da2bd747fd83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>AMORPHOUS STATE</topic><topic>Applied sciences</topic><topic>DIRECT ENERGY CONVERTERS</topic><topic>ELEMENTS</topic><topic>Energy</topic><topic>ENERGY GAP</topic><topic>ENERGY-LEVEL DENSITY</topic><topic>Exact sciences and technology</topic><topic>GERMANIUM COMPOUNDS</topic><topic>GERMANIUM SILICIDES</topic><topic>HYDROGEN ADDITIONS</topic><topic>Natural energy</topic><topic>PHOTOELECTRIC CELLS</topic><topic>PHOTOVOLTAIC CELLS</topic><topic>Photovoltaic conversion</topic><topic>SCHOTTKY BARRIER DIODES</topic><topic>SEMICONDUCTOR DEVICES</topic><topic>SEMICONDUCTOR DIODES</topic><topic>SEMIMETALS</topic><topic>SILICIDES</topic><topic>SILICON</topic><topic>SILICON COMPOUNDS</topic><topic>SOLAR CELLS</topic><topic>Solar cells. Photoelectrochemical cells</topic><topic>SOLAR ENERGY</topic><topic>SOLAR EQUIPMENT 140501 -- Solar Energy Conversion-- Photovoltaic Conversion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>HEGEDUS, S. S</creatorcontrib><creatorcontrib>FAGEN, E. A</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>HEGEDUS, S. S</au><au>FAGEN, E. A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Midgap states in a-Si:H and a-SiGe:H p-i-n solar cells and Schottky junctions by capacitance techniques</atitle><jtitle>Journal of applied physics</jtitle><date>1992-06-15</date><risdate>1992</risdate><volume>71</volume><issue>12</issue><spage>5941</spage><epage>5951</epage><pages>5941-5951</pages><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>The midgap density of states (MGDOS) in a-SiGe:H alloys is investigated by capacitance measurements on p-i-n solar cells. Past work on thick a-Si:H Schottky barriers is extended to thin a-SiGe:H p-i-n cells. Four methods of determining the MGDOS from the measured capacitance are described, and each is applied to two p-i-n devices having 0% and 62% Ge in the i layers, respectively. The first method involves fitting an equivalent circuit model to the measured admittance. Close agreement is found over a wide range of temperature and frequency. The single junction model is shown to apply equally well to p-i-n and Schottky diodes, justifying the neglect of the n-i junction and thin doped layers in the p-i-n admittance analysis. A second method determines g0 from the limiting capacitance at high temperature. The third and fourth methods extract g0 from the dependence of capacitance on voltage bias. One of these is novel, presented here for the first time. Thus, a unique feature of this study is the application of several different capacitance methods to standard p-i-n solar cell devices. Agreement within ±25% is found among the values of the MGDOS from the four methods. The MGDOS increases exponentially from (1–2)×1016 to (3–4)×1017/cm3 eV as the Ge increases from 0% to 62%, in general agreement with results of others.</abstract><cop>Woodbury, NY</cop><pub>American Institute of Physics</pub><doi>10.1063/1.350444</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8979 |
ispartof | Journal of applied physics, 1992-06, Vol.71 (12), p.5941-5951 |
issn | 0021-8979 1089-7550 |
language | eng |
recordid | cdi_pascalfrancis_primary_5475529 |
source | AIP Digital Archive |
subjects | AMORPHOUS STATE Applied sciences DIRECT ENERGY CONVERTERS ELEMENTS Energy ENERGY GAP ENERGY-LEVEL DENSITY Exact sciences and technology GERMANIUM COMPOUNDS GERMANIUM SILICIDES HYDROGEN ADDITIONS Natural energy PHOTOELECTRIC CELLS PHOTOVOLTAIC CELLS Photovoltaic conversion SCHOTTKY BARRIER DIODES SEMICONDUCTOR DEVICES SEMICONDUCTOR DIODES SEMIMETALS SILICIDES SILICON SILICON COMPOUNDS SOLAR CELLS Solar cells. Photoelectrochemical cells SOLAR ENERGY SOLAR EQUIPMENT 140501 -- Solar Energy Conversion-- Photovoltaic Conversion |
title | Midgap states in a-Si:H and a-SiGe:H p-i-n solar cells and Schottky junctions by capacitance techniques |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T18%3A26%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Midgap%20states%20in%20a-Si:H%20and%20a-SiGe:H%20p-i-n%20solar%20cells%20and%20Schottky%20junctions%20by%20capacitance%20techniques&rft.jtitle=Journal%20of%20applied%20physics&rft.au=HEGEDUS,%20S.%20S&rft.date=1992-06-15&rft.volume=71&rft.issue=12&rft.spage=5941&rft.epage=5951&rft.pages=5941-5951&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/1.350444&rft_dat=%3Cpascalfrancis_osti_%3E5475529%3C/pascalfrancis_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |