Structural elements of human parathyroid hormone and their possible relation to biological activities

Human parathyroid hormone (hPTH) and several deletion analogues were examined for the presence of secondary structure using circular dichroism spectroscopy. The spectra of hPTH and the deletion analogues 8-84, 34-53, 53-84, 1-34, 13-34, 1-19, and 20-34, in neutral, aqueous buffer, gave no evidence f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemistry (Easton) 1992-02, Vol.31 (7), p.2056-2063
Hauptverfasser: Neugebauer, W, Surewicz, W. K, Gordon, H. L, Somorjai, R. L, Sung, W, Willick, G. E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Human parathyroid hormone (hPTH) and several deletion analogues were examined for the presence of secondary structure using circular dichroism spectroscopy. The spectra of hPTH and the deletion analogues 8-84, 34-53, 53-84, 1-34, 13-34, 1-19, and 20-34, in neutral, aqueous buffer, gave no evidence for extensive secondary structure. An alpha-helical-like spectral contribution was found to arise from a region within peptide 13-34. This spectral contribution was speculated to arise from partial stability of a helix consisting of residues 17-29. Molecular dynamics simulations of peptide 1-34 suggested that this peptide tends to fold with a bend defined by residues 10-14, with the amino-terminal and carboxyl-terminal residues tending to be in more extended forms and the other residues in helical-like conformations. The addition of trifluoroethanol promoted the formation of a-helix, mainly in the 1-34 region. The putative helix comprised of residues 17-29 was stabilized by the addition of 10-20% TFE, while a second putative helix proximal to the amino terminus, and comprised of residues 3-11, was stabilized by slightly higher concentrations of TFE. An amphiphilic sequence was identified within the 20-34 fragment. The development of alpha-helix on binding this fragment, and other analogues containing this sequence, to palmitoyloleoylphosphatidylserine vesicles provided experimental evidence for the potential role of this amphiphilic sequence in binding to membranes or to a membrane receptor. The relationships between these alpha-helical regions in 1-34, either potentiated by trifluoroethanol or lipid vesicles, are discussed in terms of different receptor-binding regions within hPTH.
ISSN:0006-2960
1520-4995
DOI:10.1021/bi00122a023