Small-sample adjustments to tests with unbalanced repeated measures assuming several covariance structures

Recent advances in methods for analysis of longitudinal data arid incomplete repeated measures have been in the area of maximum likelihood (ML) and restricted maximum likelihood (REML) methods (e.g., Laird and Ware, 1982 Biometrics, Jennrich and Schluchter, 1986 Biometrics). This paper outlines the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of statistical computation and simulation 1990-10, Vol.37 (1-2), p.69-87
Hauptverfasser: Schluchter, Mark D., Elashoff, Janet T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 87
container_issue 1-2
container_start_page 69
container_title Journal of statistical computation and simulation
container_volume 37
creator Schluchter, Mark D.
Elashoff, Janet T.
description Recent advances in methods for analysis of longitudinal data arid incomplete repeated measures have been in the area of maximum likelihood (ML) and restricted maximum likelihood (REML) methods (e.g., Laird and Ware, 1982 Biometrics, Jennrich and Schluchter, 1986 Biometrics). This paper outlines the ML and REML approaches to the analysis of incomplete repeated measures data and growth curves, and then examines methods for small-sample adjustment of asymptotic Wald-type chi-square tests constructed from ML and REML estimates under four different assumed covariance structures. These adjustments involve transformation of the Wald Ghi-square statistic to an approximate F-statistic. In certain cases when data are complete and balanced, the transformed test statistics have exact F-distribution under the null hypothesis. The first three covariance structures: (1) Compound Symmetry, (2) First-Order Autoregressive, and (3) Multivariate (unstructured), are examined in the context of the analysis of a repeated measures d sign having a single between-subjects factor and a single within-subjects factor. The fourth model, which implies a special type of covariance structure, is a Linear Random Effects Growth Curve Model. For each covariance structure model, we review known exact results both for the case of balanced and unbalanced data. We then examine the type I error rates of the various tests via a small simulation study. It is shown that the most appropriate type of small-sample correction depends upon the form of the assumed covariance structure, whether ML or REML procedures are used, and whether the test is a 'between groups' or 'within-subject' test. The results emphasize the importance of applying a correction to the asymptotic tests in small samples.
doi_str_mv 10.1080/00949659008811295
format Article
fullrecord <record><control><sourceid>pascalfrancis_cross</sourceid><recordid>TN_cdi_pascalfrancis_primary_5019046</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>5019046</sourcerecordid><originalsourceid>FETCH-LOGICAL-c242t-36f9acc02dc2a5fa09494e3e74ec9fadf1ff0e75bd67feae55996ef84de7cf6a3</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouK7-AG85eK0mbZM24EUWv2DBg3ous-lEu6Ttkkl32X9vy6oX8TQvzPPOx8vYpRTXUpTiRgiTG62MEGUpZWrUEZtJpbNESZ0ds9nUT0ZAnbIzorUQQkqVztj6tQXvE4J245FDvR4otthF4rHnEWkUuyZ-8qFbgYfOYs0DbhDiKFoEGgISB6KhbboPTrjFAJ7bfguhmXBOMQw2Ttg5O3HgCS--65y9P9y_LZ6S5cvj8-Jumdg0T2OSaWfAWpHWNgXlYHosxwyLHK1xUDvpnMBCrWpdOARUyhiNrsxrLKzTkM2ZPMy1oScK6KpNaFoI-0qKagqr-hPW6Lk6eDZAFrwL4-0N_RqVkEbkesRuD1jTuT60sOuDr6sIe9-HH0_2_5YvIcOAqg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Small-sample adjustments to tests with unbalanced repeated measures assuming several covariance structures</title><source>Taylor &amp; Francis:Master (3349 titles)</source><creator>Schluchter, Mark D. ; Elashoff, Janet T.</creator><creatorcontrib>Schluchter, Mark D. ; Elashoff, Janet T.</creatorcontrib><description>Recent advances in methods for analysis of longitudinal data arid incomplete repeated measures have been in the area of maximum likelihood (ML) and restricted maximum likelihood (REML) methods (e.g., Laird and Ware, 1982 Biometrics, Jennrich and Schluchter, 1986 Biometrics). This paper outlines the ML and REML approaches to the analysis of incomplete repeated measures data and growth curves, and then examines methods for small-sample adjustment of asymptotic Wald-type chi-square tests constructed from ML and REML estimates under four different assumed covariance structures. These adjustments involve transformation of the Wald Ghi-square statistic to an approximate F-statistic. In certain cases when data are complete and balanced, the transformed test statistics have exact F-distribution under the null hypothesis. The first three covariance structures: (1) Compound Symmetry, (2) First-Order Autoregressive, and (3) Multivariate (unstructured), are examined in the context of the analysis of a repeated measures d sign having a single between-subjects factor and a single within-subjects factor. The fourth model, which implies a special type of covariance structure, is a Linear Random Effects Growth Curve Model. For each covariance structure model, we review known exact results both for the case of balanced and unbalanced data. We then examine the type I error rates of the various tests via a small simulation study. It is shown that the most appropriate type of small-sample correction depends upon the form of the assumed covariance structure, whether ML or REML procedures are used, and whether the test is a 'between groups' or 'within-subject' test. The results emphasize the importance of applying a correction to the asymptotic tests in small samples.</description><identifier>ISSN: 0094-9655</identifier><identifier>EISSN: 1563-5163</identifier><identifier>DOI: 10.1080/00949659008811295</identifier><identifier>CODEN: JSCSAJ</identifier><language>eng</language><publisher>Abingdon: Gordon and Breach Science Publishers</publisher><subject>Autoregressive models ; Exact sciences and technology ; growth curves ; incomplete data ; Linear inference, regression ; Mathematics ; Probability and statistics ; random-effects models ; restricted maximum likelihood ; Sciences and techniques of general use ; Statistics ; Wald tests</subject><ispartof>Journal of statistical computation and simulation, 1990-10, Vol.37 (1-2), p.69-87</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 1990</rights><rights>1992 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c242t-36f9acc02dc2a5fa09494e3e74ec9fadf1ff0e75bd67feae55996ef84de7cf6a3</citedby><cites>FETCH-LOGICAL-c242t-36f9acc02dc2a5fa09494e3e74ec9fadf1ff0e75bd67feae55996ef84de7cf6a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/00949659008811295$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/00949659008811295$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,59647,60436</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=5019046$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Schluchter, Mark D.</creatorcontrib><creatorcontrib>Elashoff, Janet T.</creatorcontrib><title>Small-sample adjustments to tests with unbalanced repeated measures assuming several covariance structures</title><title>Journal of statistical computation and simulation</title><description>Recent advances in methods for analysis of longitudinal data arid incomplete repeated measures have been in the area of maximum likelihood (ML) and restricted maximum likelihood (REML) methods (e.g., Laird and Ware, 1982 Biometrics, Jennrich and Schluchter, 1986 Biometrics). This paper outlines the ML and REML approaches to the analysis of incomplete repeated measures data and growth curves, and then examines methods for small-sample adjustment of asymptotic Wald-type chi-square tests constructed from ML and REML estimates under four different assumed covariance structures. These adjustments involve transformation of the Wald Ghi-square statistic to an approximate F-statistic. In certain cases when data are complete and balanced, the transformed test statistics have exact F-distribution under the null hypothesis. The first three covariance structures: (1) Compound Symmetry, (2) First-Order Autoregressive, and (3) Multivariate (unstructured), are examined in the context of the analysis of a repeated measures d sign having a single between-subjects factor and a single within-subjects factor. The fourth model, which implies a special type of covariance structure, is a Linear Random Effects Growth Curve Model. For each covariance structure model, we review known exact results both for the case of balanced and unbalanced data. We then examine the type I error rates of the various tests via a small simulation study. It is shown that the most appropriate type of small-sample correction depends upon the form of the assumed covariance structure, whether ML or REML procedures are used, and whether the test is a 'between groups' or 'within-subject' test. The results emphasize the importance of applying a correction to the asymptotic tests in small samples.</description><subject>Autoregressive models</subject><subject>Exact sciences and technology</subject><subject>growth curves</subject><subject>incomplete data</subject><subject>Linear inference, regression</subject><subject>Mathematics</subject><subject>Probability and statistics</subject><subject>random-effects models</subject><subject>restricted maximum likelihood</subject><subject>Sciences and techniques of general use</subject><subject>Statistics</subject><subject>Wald tests</subject><issn>0094-9655</issn><issn>1563-5163</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1990</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAQhoMouK7-AG85eK0mbZM24EUWv2DBg3ous-lEu6Ttkkl32X9vy6oX8TQvzPPOx8vYpRTXUpTiRgiTG62MEGUpZWrUEZtJpbNESZ0ds9nUT0ZAnbIzorUQQkqVztj6tQXvE4J245FDvR4otthF4rHnEWkUuyZ-8qFbgYfOYs0DbhDiKFoEGgISB6KhbboPTrjFAJ7bfguhmXBOMQw2Ttg5O3HgCS--65y9P9y_LZ6S5cvj8-Jumdg0T2OSaWfAWpHWNgXlYHosxwyLHK1xUDvpnMBCrWpdOARUyhiNrsxrLKzTkM2ZPMy1oScK6KpNaFoI-0qKagqr-hPW6Lk6eDZAFrwL4-0N_RqVkEbkesRuD1jTuT60sOuDr6sIe9-HH0_2_5YvIcOAqg</recordid><startdate>19901001</startdate><enddate>19901001</enddate><creator>Schluchter, Mark D.</creator><creator>Elashoff, Janet T.</creator><general>Gordon and Breach Science Publishers</general><general>Taylor and Francis</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19901001</creationdate><title>Small-sample adjustments to tests with unbalanced repeated measures assuming several covariance structures</title><author>Schluchter, Mark D. ; Elashoff, Janet T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c242t-36f9acc02dc2a5fa09494e3e74ec9fadf1ff0e75bd67feae55996ef84de7cf6a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1990</creationdate><topic>Autoregressive models</topic><topic>Exact sciences and technology</topic><topic>growth curves</topic><topic>incomplete data</topic><topic>Linear inference, regression</topic><topic>Mathematics</topic><topic>Probability and statistics</topic><topic>random-effects models</topic><topic>restricted maximum likelihood</topic><topic>Sciences and techniques of general use</topic><topic>Statistics</topic><topic>Wald tests</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schluchter, Mark D.</creatorcontrib><creatorcontrib>Elashoff, Janet T.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of statistical computation and simulation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schluchter, Mark D.</au><au>Elashoff, Janet T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Small-sample adjustments to tests with unbalanced repeated measures assuming several covariance structures</atitle><jtitle>Journal of statistical computation and simulation</jtitle><date>1990-10-01</date><risdate>1990</risdate><volume>37</volume><issue>1-2</issue><spage>69</spage><epage>87</epage><pages>69-87</pages><issn>0094-9655</issn><eissn>1563-5163</eissn><coden>JSCSAJ</coden><abstract>Recent advances in methods for analysis of longitudinal data arid incomplete repeated measures have been in the area of maximum likelihood (ML) and restricted maximum likelihood (REML) methods (e.g., Laird and Ware, 1982 Biometrics, Jennrich and Schluchter, 1986 Biometrics). This paper outlines the ML and REML approaches to the analysis of incomplete repeated measures data and growth curves, and then examines methods for small-sample adjustment of asymptotic Wald-type chi-square tests constructed from ML and REML estimates under four different assumed covariance structures. These adjustments involve transformation of the Wald Ghi-square statistic to an approximate F-statistic. In certain cases when data are complete and balanced, the transformed test statistics have exact F-distribution under the null hypothesis. The first three covariance structures: (1) Compound Symmetry, (2) First-Order Autoregressive, and (3) Multivariate (unstructured), are examined in the context of the analysis of a repeated measures d sign having a single between-subjects factor and a single within-subjects factor. The fourth model, which implies a special type of covariance structure, is a Linear Random Effects Growth Curve Model. For each covariance structure model, we review known exact results both for the case of balanced and unbalanced data. We then examine the type I error rates of the various tests via a small simulation study. It is shown that the most appropriate type of small-sample correction depends upon the form of the assumed covariance structure, whether ML or REML procedures are used, and whether the test is a 'between groups' or 'within-subject' test. The results emphasize the importance of applying a correction to the asymptotic tests in small samples.</abstract><cop>Abingdon</cop><pub>Gordon and Breach Science Publishers</pub><doi>10.1080/00949659008811295</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-9655
ispartof Journal of statistical computation and simulation, 1990-10, Vol.37 (1-2), p.69-87
issn 0094-9655
1563-5163
language eng
recordid cdi_pascalfrancis_primary_5019046
source Taylor & Francis:Master (3349 titles)
subjects Autoregressive models
Exact sciences and technology
growth curves
incomplete data
Linear inference, regression
Mathematics
Probability and statistics
random-effects models
restricted maximum likelihood
Sciences and techniques of general use
Statistics
Wald tests
title Small-sample adjustments to tests with unbalanced repeated measures assuming several covariance structures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T05%3A49%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Small-sample%20adjustments%20to%20tests%20with%20unbalanced%20repeated%20measures%20assuming%20several%20covariance%20structures&rft.jtitle=Journal%20of%20statistical%20computation%20and%20simulation&rft.au=Schluchter,%20Mark%20D.&rft.date=1990-10-01&rft.volume=37&rft.issue=1-2&rft.spage=69&rft.epage=87&rft.pages=69-87&rft.issn=0094-9655&rft.eissn=1563-5163&rft.coden=JSCSAJ&rft_id=info:doi/10.1080/00949659008811295&rft_dat=%3Cpascalfrancis_cross%3E5019046%3C/pascalfrancis_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true