MODA: moving object detecting architecture

A type of cellular neural network (CNN) is described, which may be classified in the broader category of generalized cellular neural networks (GCNNs). Its novelty consists both in the task it performs and in its architecture and way of operation. The input to the network is a two-dimensional picture...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems. 2, Analog and digital signal processing Analog and digital signal processing, 1993-03, Vol.40 (3), p.174-183
Hauptverfasser: Cimagalli, V., Bobbi, M., Balsi, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 183
container_issue 3
container_start_page 174
container_title IEEE transactions on circuits and systems. 2, Analog and digital signal processing
container_volume 40
creator Cimagalli, V.
Bobbi, M.
Balsi, M.
description A type of cellular neural network (CNN) is described, which may be classified in the broader category of generalized cellular neural networks (GCNNs). Its novelty consists both in the task it performs and in its architecture and way of operation. The input to the network is a two-dimensional picture that is processed continuously in order to detect real time trajectories of moving objects in a noisy environment. MODA is designed by synthesis, so that it does not require learning, and it performs its task by implementing a nonlinear continuous functional in a vector space. The network, its architecture, its equations, and the method of design are described. In addition, the new network is compared with known paradigms of ANN and CNN. Results of simulations are also reported.< >
doi_str_mv 10.1109/82.222816
format Article
fullrecord <record><control><sourceid>pascalfrancis_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_4851296</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>222816</ieee_id><sourcerecordid>4851296</sourcerecordid><originalsourceid>FETCH-LOGICAL-c275t-eb7106a701f88e284916469776f0fdd730d34e5b31f51e8dc691695ff5d147273</originalsourceid><addsrcrecordid>eNo9j81Lw0AQxRdRsFYPXj3l4EUhdWaT_fJW6idUelHwFja7s5rSNmW3Cv73JqT09Gbe_ObBY-wSYYII5k7zCedcozxiIxRC58jF53E3g1C5wgJO2VlKSwDQaPSI3b4tHqb32br9bTZfWVsvye0yT7tOesNG9930y0-kc3YS7CrRxV7H7OPp8X32ks8Xz6-z6Tx3XIldTrVCkFYBBq2J69KgLKVRSgYI3qsCfFGSqAsMAkl7JzvAiBCEx1JxVYzZzZDrYptSpFBtY7O28a9CqPqSlebVULJjrwd2a5OzqxDtxjXp8FBqgdz02NWANUR0uO4z_gGZBlbH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>MODA: moving object detecting architecture</title><source>IEEE Electronic Library (IEL)</source><creator>Cimagalli, V. ; Bobbi, M. ; Balsi, M.</creator><creatorcontrib>Cimagalli, V. ; Bobbi, M. ; Balsi, M.</creatorcontrib><description>A type of cellular neural network (CNN) is described, which may be classified in the broader category of generalized cellular neural networks (GCNNs). Its novelty consists both in the task it performs and in its architecture and way of operation. The input to the network is a two-dimensional picture that is processed continuously in order to detect real time trajectories of moving objects in a noisy environment. MODA is designed by synthesis, so that it does not require learning, and it performs its task by implementing a nonlinear continuous functional in a vector space. The network, its architecture, its equations, and the method of design are described. In addition, the new network is compared with known paradigms of ANN and CNN. Results of simulations are also reported.&lt; &gt;</description><identifier>ISSN: 1057-7130</identifier><identifier>EISSN: 1558-125X</identifier><identifier>DOI: 10.1109/82.222816</identifier><identifier>CODEN: ICSPE5</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Cellular neural networks ; Design methodology ; Electric, optical and optoelectronic circuits ; Electronics ; Exact sciences and technology ; High performance computing ; Network synthesis ; Neural networks ; Noise shaping ; Nonlinear equations ; Object detection ; Sensor arrays ; Shape ; Working environment noise</subject><ispartof>IEEE transactions on circuits and systems. 2, Analog and digital signal processing, 1993-03, Vol.40 (3), p.174-183</ispartof><rights>1993 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c275t-eb7106a701f88e284916469776f0fdd730d34e5b31f51e8dc691695ff5d147273</citedby><cites>FETCH-LOGICAL-c275t-eb7106a701f88e284916469776f0fdd730d34e5b31f51e8dc691695ff5d147273</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/222816$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/222816$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=4851296$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Cimagalli, V.</creatorcontrib><creatorcontrib>Bobbi, M.</creatorcontrib><creatorcontrib>Balsi, M.</creatorcontrib><title>MODA: moving object detecting architecture</title><title>IEEE transactions on circuits and systems. 2, Analog and digital signal processing</title><addtitle>T-CAS2</addtitle><description>A type of cellular neural network (CNN) is described, which may be classified in the broader category of generalized cellular neural networks (GCNNs). Its novelty consists both in the task it performs and in its architecture and way of operation. The input to the network is a two-dimensional picture that is processed continuously in order to detect real time trajectories of moving objects in a noisy environment. MODA is designed by synthesis, so that it does not require learning, and it performs its task by implementing a nonlinear continuous functional in a vector space. The network, its architecture, its equations, and the method of design are described. In addition, the new network is compared with known paradigms of ANN and CNN. Results of simulations are also reported.&lt; &gt;</description><subject>Applied sciences</subject><subject>Cellular neural networks</subject><subject>Design methodology</subject><subject>Electric, optical and optoelectronic circuits</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>High performance computing</subject><subject>Network synthesis</subject><subject>Neural networks</subject><subject>Noise shaping</subject><subject>Nonlinear equations</subject><subject>Object detection</subject><subject>Sensor arrays</subject><subject>Shape</subject><subject>Working environment noise</subject><issn>1057-7130</issn><issn>1558-125X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><recordid>eNo9j81Lw0AQxRdRsFYPXj3l4EUhdWaT_fJW6idUelHwFja7s5rSNmW3Cv73JqT09Gbe_ObBY-wSYYII5k7zCedcozxiIxRC58jF53E3g1C5wgJO2VlKSwDQaPSI3b4tHqb32br9bTZfWVsvye0yT7tOesNG9930y0-kc3YS7CrRxV7H7OPp8X32ks8Xz6-z6Tx3XIldTrVCkFYBBq2J69KgLKVRSgYI3qsCfFGSqAsMAkl7JzvAiBCEx1JxVYzZzZDrYptSpFBtY7O28a9CqPqSlebVULJjrwd2a5OzqxDtxjXp8FBqgdz02NWANUR0uO4z_gGZBlbH</recordid><startdate>19930301</startdate><enddate>19930301</enddate><creator>Cimagalli, V.</creator><creator>Bobbi, M.</creator><creator>Balsi, M.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19930301</creationdate><title>MODA: moving object detecting architecture</title><author>Cimagalli, V. ; Bobbi, M. ; Balsi, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c275t-eb7106a701f88e284916469776f0fdd730d34e5b31f51e8dc691695ff5d147273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>Applied sciences</topic><topic>Cellular neural networks</topic><topic>Design methodology</topic><topic>Electric, optical and optoelectronic circuits</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>High performance computing</topic><topic>Network synthesis</topic><topic>Neural networks</topic><topic>Noise shaping</topic><topic>Nonlinear equations</topic><topic>Object detection</topic><topic>Sensor arrays</topic><topic>Shape</topic><topic>Working environment noise</topic><toplevel>online_resources</toplevel><creatorcontrib>Cimagalli, V.</creatorcontrib><creatorcontrib>Bobbi, M.</creatorcontrib><creatorcontrib>Balsi, M.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>IEEE transactions on circuits and systems. 2, Analog and digital signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cimagalli, V.</au><au>Bobbi, M.</au><au>Balsi, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MODA: moving object detecting architecture</atitle><jtitle>IEEE transactions on circuits and systems. 2, Analog and digital signal processing</jtitle><stitle>T-CAS2</stitle><date>1993-03-01</date><risdate>1993</risdate><volume>40</volume><issue>3</issue><spage>174</spage><epage>183</epage><pages>174-183</pages><issn>1057-7130</issn><eissn>1558-125X</eissn><coden>ICSPE5</coden><abstract>A type of cellular neural network (CNN) is described, which may be classified in the broader category of generalized cellular neural networks (GCNNs). Its novelty consists both in the task it performs and in its architecture and way of operation. The input to the network is a two-dimensional picture that is processed continuously in order to detect real time trajectories of moving objects in a noisy environment. MODA is designed by synthesis, so that it does not require learning, and it performs its task by implementing a nonlinear continuous functional in a vector space. The network, its architecture, its equations, and the method of design are described. In addition, the new network is compared with known paradigms of ANN and CNN. Results of simulations are also reported.&lt; &gt;</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/82.222816</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1057-7130
ispartof IEEE transactions on circuits and systems. 2, Analog and digital signal processing, 1993-03, Vol.40 (3), p.174-183
issn 1057-7130
1558-125X
language eng
recordid cdi_pascalfrancis_primary_4851296
source IEEE Electronic Library (IEL)
subjects Applied sciences
Cellular neural networks
Design methodology
Electric, optical and optoelectronic circuits
Electronics
Exact sciences and technology
High performance computing
Network synthesis
Neural networks
Noise shaping
Nonlinear equations
Object detection
Sensor arrays
Shape
Working environment noise
title MODA: moving object detecting architecture
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T05%3A25%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MODA:%20moving%20object%20detecting%20architecture&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems.%202,%20Analog%20and%20digital%20signal%20processing&rft.au=Cimagalli,%20V.&rft.date=1993-03-01&rft.volume=40&rft.issue=3&rft.spage=174&rft.epage=183&rft.pages=174-183&rft.issn=1057-7130&rft.eissn=1558-125X&rft.coden=ICSPE5&rft_id=info:doi/10.1109/82.222816&rft_dat=%3Cpascalfrancis_RIE%3E4851296%3C/pascalfrancis_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=222816&rfr_iscdi=true