A linear programming approach for the weighted graph matching problem

A linear programming (LP) approach is proposed for the weighted graph matching problem. A linear program is obtained by formulating the graph matching problem in L/sub 1/ norm and then transforming the resulting quadratic optimization problem to a linear one. The linear program is solved using a sim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence 1993-05, Vol.15 (5), p.522-525
Hauptverfasser: Almohamad, H.A., Duffuaa, S.O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 525
container_issue 5
container_start_page 522
container_title IEEE transactions on pattern analysis and machine intelligence
container_volume 15
creator Almohamad, H.A.
Duffuaa, S.O.
description A linear programming (LP) approach is proposed for the weighted graph matching problem. A linear program is obtained by formulating the graph matching problem in L/sub 1/ norm and then transforming the resulting quadratic optimization problem to a linear one. The linear program is solved using a simplex-based algorithm. Then, approximate 0-1 integer solutions are obtained by applying the Hungarian method on the real solutions of the linear program. The complexity of the proposed algorithm is polynomial time, and it is O(n/sup 6/L) for matching graphs of size n. The developed algorithm is compared to two other algorithms. One is based on an eigendecomposition approach and the other on a symmetric polynomial transform. Experimental results showed that the LP approach is superior in matching graphs than both other methods.< >
doi_str_mv 10.1109/34.211474
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_4777537</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>211474</ieee_id><sourcerecordid>28360913</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-5548b08607e929021e417a2b74da19a0b23193af4487287b21a1c4220205ad833</originalsourceid><addsrcrecordid>eNo90E1LAzEQBuAgCtbqwaunHETwsDWTZJvkWEr9gIIXPS-z6Wx3Zb9Mtoj_3i1bPIWQZ94ML2O3IBYAwj0pvZAA2ugzNgOnXKJS5c7ZTMBSJtZKe8muYvwSAnQq1IxtVryuWsLA-9DtAzZN1e459uMNfcmLLvChJP5D1b4caMdH0pe8wcGXRziyvKbmml0UWEe6OZ1z9vm8-Vi_Jtv3l7f1apt4LcyQpKm2ubBLYchJJySQBoMyN3qH4FDkUo07Y6G1NdKaXAKC11IKKVLcWaXm7GHKHf_9PlAcsqaKnuoaW-oOMZNWLYWDI3ycoA9djIGKrA9Vg-E3A5Edi8qUzqaiRnt_CsXosS4Ctr6K_wPaGJMqM7K7iVVE9P96yvgDCfBtlg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28360913</pqid></control><display><type>article</type><title>A linear programming approach for the weighted graph matching problem</title><source>IEEE Electronic Library (IEL)</source><creator>Almohamad, H.A. ; Duffuaa, S.O.</creator><creatorcontrib>Almohamad, H.A. ; Duffuaa, S.O.</creatorcontrib><description>A linear programming (LP) approach is proposed for the weighted graph matching problem. A linear program is obtained by formulating the graph matching problem in L/sub 1/ norm and then transforming the resulting quadratic optimization problem to a linear one. The linear program is solved using a simplex-based algorithm. Then, approximate 0-1 integer solutions are obtained by applying the Hungarian method on the real solutions of the linear program. The complexity of the proposed algorithm is polynomial time, and it is O(n/sup 6/L) for matching graphs of size n. The developed algorithm is compared to two other algorithms. One is based on an eigendecomposition approach and the other on a symmetric polynomial transform. Experimental results showed that the LP approach is superior in matching graphs than both other methods.&lt; &gt;</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>DOI: 10.1109/34.211474</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>Los Alamitos, CA: IEEE</publisher><subject>Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Euclidean distance ; Exact sciences and technology ; Linear programming ; Optimization methods ; Pattern matching ; Pattern recognition ; Pattern recognition. Digital image processing. Computational geometry ; Polynomials ; Relaxation methods ; Symmetric matrices ; Systems engineering and theory ; Tree graphs</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 1993-05, Vol.15 (5), p.522-525</ispartof><rights>1993 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-5548b08607e929021e417a2b74da19a0b23193af4487287b21a1c4220205ad833</citedby><cites>FETCH-LOGICAL-c407t-5548b08607e929021e417a2b74da19a0b23193af4487287b21a1c4220205ad833</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/211474$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/211474$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=4777537$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Almohamad, H.A.</creatorcontrib><creatorcontrib>Duffuaa, S.O.</creatorcontrib><title>A linear programming approach for the weighted graph matching problem</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><description>A linear programming (LP) approach is proposed for the weighted graph matching problem. A linear program is obtained by formulating the graph matching problem in L/sub 1/ norm and then transforming the resulting quadratic optimization problem to a linear one. The linear program is solved using a simplex-based algorithm. Then, approximate 0-1 integer solutions are obtained by applying the Hungarian method on the real solutions of the linear program. The complexity of the proposed algorithm is polynomial time, and it is O(n/sup 6/L) for matching graphs of size n. The developed algorithm is compared to two other algorithms. One is based on an eigendecomposition approach and the other on a symmetric polynomial transform. Experimental results showed that the LP approach is superior in matching graphs than both other methods.&lt; &gt;</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Euclidean distance</subject><subject>Exact sciences and technology</subject><subject>Linear programming</subject><subject>Optimization methods</subject><subject>Pattern matching</subject><subject>Pattern recognition</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Polynomials</subject><subject>Relaxation methods</subject><subject>Symmetric matrices</subject><subject>Systems engineering and theory</subject><subject>Tree graphs</subject><issn>0162-8828</issn><issn>1939-3539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><recordid>eNo90E1LAzEQBuAgCtbqwaunHETwsDWTZJvkWEr9gIIXPS-z6Wx3Zb9Mtoj_3i1bPIWQZ94ML2O3IBYAwj0pvZAA2ugzNgOnXKJS5c7ZTMBSJtZKe8muYvwSAnQq1IxtVryuWsLA-9DtAzZN1e459uMNfcmLLvChJP5D1b4caMdH0pe8wcGXRziyvKbmml0UWEe6OZ1z9vm8-Vi_Jtv3l7f1apt4LcyQpKm2ubBLYchJJySQBoMyN3qH4FDkUo07Y6G1NdKaXAKC11IKKVLcWaXm7GHKHf_9PlAcsqaKnuoaW-oOMZNWLYWDI3ycoA9djIGKrA9Vg-E3A5Edi8qUzqaiRnt_CsXosS4Ctr6K_wPaGJMqM7K7iVVE9P96yvgDCfBtlg</recordid><startdate>19930501</startdate><enddate>19930501</enddate><creator>Almohamad, H.A.</creator><creator>Duffuaa, S.O.</creator><general>IEEE</general><general>IEEE Computer Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19930501</creationdate><title>A linear programming approach for the weighted graph matching problem</title><author>Almohamad, H.A. ; Duffuaa, S.O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-5548b08607e929021e417a2b74da19a0b23193af4487287b21a1c4220205ad833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Euclidean distance</topic><topic>Exact sciences and technology</topic><topic>Linear programming</topic><topic>Optimization methods</topic><topic>Pattern matching</topic><topic>Pattern recognition</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Polynomials</topic><topic>Relaxation methods</topic><topic>Symmetric matrices</topic><topic>Systems engineering and theory</topic><topic>Tree graphs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Almohamad, H.A.</creatorcontrib><creatorcontrib>Duffuaa, S.O.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Almohamad, H.A.</au><au>Duffuaa, S.O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A linear programming approach for the weighted graph matching problem</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><date>1993-05-01</date><risdate>1993</risdate><volume>15</volume><issue>5</issue><spage>522</spage><epage>525</epage><pages>522-525</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><coden>ITPIDJ</coden><abstract>A linear programming (LP) approach is proposed for the weighted graph matching problem. A linear program is obtained by formulating the graph matching problem in L/sub 1/ norm and then transforming the resulting quadratic optimization problem to a linear one. The linear program is solved using a simplex-based algorithm. Then, approximate 0-1 integer solutions are obtained by applying the Hungarian method on the real solutions of the linear program. The complexity of the proposed algorithm is polynomial time, and it is O(n/sup 6/L) for matching graphs of size n. The developed algorithm is compared to two other algorithms. One is based on an eigendecomposition approach and the other on a symmetric polynomial transform. Experimental results showed that the LP approach is superior in matching graphs than both other methods.&lt; &gt;</abstract><cop>Los Alamitos, CA</cop><pub>IEEE</pub><doi>10.1109/34.211474</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0162-8828
ispartof IEEE transactions on pattern analysis and machine intelligence, 1993-05, Vol.15 (5), p.522-525
issn 0162-8828
1939-3539
language eng
recordid cdi_pascalfrancis_primary_4777537
source IEEE Electronic Library (IEL)
subjects Applied sciences
Artificial intelligence
Computer science
control theory
systems
Euclidean distance
Exact sciences and technology
Linear programming
Optimization methods
Pattern matching
Pattern recognition
Pattern recognition. Digital image processing. Computational geometry
Polynomials
Relaxation methods
Symmetric matrices
Systems engineering and theory
Tree graphs
title A linear programming approach for the weighted graph matching problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T00%3A28%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20linear%20programming%20approach%20for%20the%20weighted%20graph%20matching%20problem&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Almohamad,%20H.A.&rft.date=1993-05-01&rft.volume=15&rft.issue=5&rft.spage=522&rft.epage=525&rft.pages=522-525&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/34.211474&rft_dat=%3Cproquest_RIE%3E28360913%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28360913&rft_id=info:pmid/&rft_ieee_id=211474&rfr_iscdi=true