A linear programming approach for the weighted graph matching problem
A linear programming (LP) approach is proposed for the weighted graph matching problem. A linear program is obtained by formulating the graph matching problem in L/sub 1/ norm and then transforming the resulting quadratic optimization problem to a linear one. The linear program is solved using a sim...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence 1993-05, Vol.15 (5), p.522-525 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 525 |
---|---|
container_issue | 5 |
container_start_page | 522 |
container_title | IEEE transactions on pattern analysis and machine intelligence |
container_volume | 15 |
creator | Almohamad, H.A. Duffuaa, S.O. |
description | A linear programming (LP) approach is proposed for the weighted graph matching problem. A linear program is obtained by formulating the graph matching problem in L/sub 1/ norm and then transforming the resulting quadratic optimization problem to a linear one. The linear program is solved using a simplex-based algorithm. Then, approximate 0-1 integer solutions are obtained by applying the Hungarian method on the real solutions of the linear program. The complexity of the proposed algorithm is polynomial time, and it is O(n/sup 6/L) for matching graphs of size n. The developed algorithm is compared to two other algorithms. One is based on an eigendecomposition approach and the other on a symmetric polynomial transform. Experimental results showed that the LP approach is superior in matching graphs than both other methods.< > |
doi_str_mv | 10.1109/34.211474 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_4777537</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>211474</ieee_id><sourcerecordid>28360913</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-5548b08607e929021e417a2b74da19a0b23193af4487287b21a1c4220205ad833</originalsourceid><addsrcrecordid>eNo90E1LAzEQBuAgCtbqwaunHETwsDWTZJvkWEr9gIIXPS-z6Wx3Zb9Mtoj_3i1bPIWQZ94ML2O3IBYAwj0pvZAA2ugzNgOnXKJS5c7ZTMBSJtZKe8muYvwSAnQq1IxtVryuWsLA-9DtAzZN1e459uMNfcmLLvChJP5D1b4caMdH0pe8wcGXRziyvKbmml0UWEe6OZ1z9vm8-Vi_Jtv3l7f1apt4LcyQpKm2ubBLYchJJySQBoMyN3qH4FDkUo07Y6G1NdKaXAKC11IKKVLcWaXm7GHKHf_9PlAcsqaKnuoaW-oOMZNWLYWDI3ycoA9djIGKrA9Vg-E3A5Edi8qUzqaiRnt_CsXosS4Ctr6K_wPaGJMqM7K7iVVE9P96yvgDCfBtlg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28360913</pqid></control><display><type>article</type><title>A linear programming approach for the weighted graph matching problem</title><source>IEEE Electronic Library (IEL)</source><creator>Almohamad, H.A. ; Duffuaa, S.O.</creator><creatorcontrib>Almohamad, H.A. ; Duffuaa, S.O.</creatorcontrib><description>A linear programming (LP) approach is proposed for the weighted graph matching problem. A linear program is obtained by formulating the graph matching problem in L/sub 1/ norm and then transforming the resulting quadratic optimization problem to a linear one. The linear program is solved using a simplex-based algorithm. Then, approximate 0-1 integer solutions are obtained by applying the Hungarian method on the real solutions of the linear program. The complexity of the proposed algorithm is polynomial time, and it is O(n/sup 6/L) for matching graphs of size n. The developed algorithm is compared to two other algorithms. One is based on an eigendecomposition approach and the other on a symmetric polynomial transform. Experimental results showed that the LP approach is superior in matching graphs than both other methods.< ></description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>DOI: 10.1109/34.211474</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>Los Alamitos, CA: IEEE</publisher><subject>Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Euclidean distance ; Exact sciences and technology ; Linear programming ; Optimization methods ; Pattern matching ; Pattern recognition ; Pattern recognition. Digital image processing. Computational geometry ; Polynomials ; Relaxation methods ; Symmetric matrices ; Systems engineering and theory ; Tree graphs</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 1993-05, Vol.15 (5), p.522-525</ispartof><rights>1993 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-5548b08607e929021e417a2b74da19a0b23193af4487287b21a1c4220205ad833</citedby><cites>FETCH-LOGICAL-c407t-5548b08607e929021e417a2b74da19a0b23193af4487287b21a1c4220205ad833</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/211474$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/211474$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=4777537$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Almohamad, H.A.</creatorcontrib><creatorcontrib>Duffuaa, S.O.</creatorcontrib><title>A linear programming approach for the weighted graph matching problem</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><description>A linear programming (LP) approach is proposed for the weighted graph matching problem. A linear program is obtained by formulating the graph matching problem in L/sub 1/ norm and then transforming the resulting quadratic optimization problem to a linear one. The linear program is solved using a simplex-based algorithm. Then, approximate 0-1 integer solutions are obtained by applying the Hungarian method on the real solutions of the linear program. The complexity of the proposed algorithm is polynomial time, and it is O(n/sup 6/L) for matching graphs of size n. The developed algorithm is compared to two other algorithms. One is based on an eigendecomposition approach and the other on a symmetric polynomial transform. Experimental results showed that the LP approach is superior in matching graphs than both other methods.< ></description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Euclidean distance</subject><subject>Exact sciences and technology</subject><subject>Linear programming</subject><subject>Optimization methods</subject><subject>Pattern matching</subject><subject>Pattern recognition</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Polynomials</subject><subject>Relaxation methods</subject><subject>Symmetric matrices</subject><subject>Systems engineering and theory</subject><subject>Tree graphs</subject><issn>0162-8828</issn><issn>1939-3539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><recordid>eNo90E1LAzEQBuAgCtbqwaunHETwsDWTZJvkWEr9gIIXPS-z6Wx3Zb9Mtoj_3i1bPIWQZ94ML2O3IBYAwj0pvZAA2ugzNgOnXKJS5c7ZTMBSJtZKe8muYvwSAnQq1IxtVryuWsLA-9DtAzZN1e459uMNfcmLLvChJP5D1b4caMdH0pe8wcGXRziyvKbmml0UWEe6OZ1z9vm8-Vi_Jtv3l7f1apt4LcyQpKm2ubBLYchJJySQBoMyN3qH4FDkUo07Y6G1NdKaXAKC11IKKVLcWaXm7GHKHf_9PlAcsqaKnuoaW-oOMZNWLYWDI3ycoA9djIGKrA9Vg-E3A5Edi8qUzqaiRnt_CsXosS4Ctr6K_wPaGJMqM7K7iVVE9P96yvgDCfBtlg</recordid><startdate>19930501</startdate><enddate>19930501</enddate><creator>Almohamad, H.A.</creator><creator>Duffuaa, S.O.</creator><general>IEEE</general><general>IEEE Computer Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19930501</creationdate><title>A linear programming approach for the weighted graph matching problem</title><author>Almohamad, H.A. ; Duffuaa, S.O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-5548b08607e929021e417a2b74da19a0b23193af4487287b21a1c4220205ad833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Euclidean distance</topic><topic>Exact sciences and technology</topic><topic>Linear programming</topic><topic>Optimization methods</topic><topic>Pattern matching</topic><topic>Pattern recognition</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Polynomials</topic><topic>Relaxation methods</topic><topic>Symmetric matrices</topic><topic>Systems engineering and theory</topic><topic>Tree graphs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Almohamad, H.A.</creatorcontrib><creatorcontrib>Duffuaa, S.O.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Almohamad, H.A.</au><au>Duffuaa, S.O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A linear programming approach for the weighted graph matching problem</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><date>1993-05-01</date><risdate>1993</risdate><volume>15</volume><issue>5</issue><spage>522</spage><epage>525</epage><pages>522-525</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><coden>ITPIDJ</coden><abstract>A linear programming (LP) approach is proposed for the weighted graph matching problem. A linear program is obtained by formulating the graph matching problem in L/sub 1/ norm and then transforming the resulting quadratic optimization problem to a linear one. The linear program is solved using a simplex-based algorithm. Then, approximate 0-1 integer solutions are obtained by applying the Hungarian method on the real solutions of the linear program. The complexity of the proposed algorithm is polynomial time, and it is O(n/sup 6/L) for matching graphs of size n. The developed algorithm is compared to two other algorithms. One is based on an eigendecomposition approach and the other on a symmetric polynomial transform. Experimental results showed that the LP approach is superior in matching graphs than both other methods.< ></abstract><cop>Los Alamitos, CA</cop><pub>IEEE</pub><doi>10.1109/34.211474</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0162-8828 |
ispartof | IEEE transactions on pattern analysis and machine intelligence, 1993-05, Vol.15 (5), p.522-525 |
issn | 0162-8828 1939-3539 |
language | eng |
recordid | cdi_pascalfrancis_primary_4777537 |
source | IEEE Electronic Library (IEL) |
subjects | Applied sciences Artificial intelligence Computer science control theory systems Euclidean distance Exact sciences and technology Linear programming Optimization methods Pattern matching Pattern recognition Pattern recognition. Digital image processing. Computational geometry Polynomials Relaxation methods Symmetric matrices Systems engineering and theory Tree graphs |
title | A linear programming approach for the weighted graph matching problem |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T00%3A28%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20linear%20programming%20approach%20for%20the%20weighted%20graph%20matching%20problem&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Almohamad,%20H.A.&rft.date=1993-05-01&rft.volume=15&rft.issue=5&rft.spage=522&rft.epage=525&rft.pages=522-525&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/34.211474&rft_dat=%3Cproquest_RIE%3E28360913%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28360913&rft_id=info:pmid/&rft_ieee_id=211474&rfr_iscdi=true |