Consensus theoretic classification methods

Consensus theory is adopted as a means of classifying geographic data from multiple sources. The foundations and usefulness of different consensus theoretic methods are discussed in conjunction with pattern recognition. Weight selections for different data sources are considered and modeling of non-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on systems, man, and cybernetics man, and cybernetics, 1992-07, Vol.22 (4), p.688-704
Hauptverfasser: Benediktsson, J.A., Swain, P.H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 704
container_issue 4
container_start_page 688
container_title IEEE transactions on systems, man, and cybernetics
container_volume 22
creator Benediktsson, J.A.
Swain, P.H.
description Consensus theory is adopted as a means of classifying geographic data from multiple sources. The foundations and usefulness of different consensus theoretic methods are discussed in conjunction with pattern recognition. Weight selections for different data sources are considered and modeling of non-Gaussian data is investigated. The application of consensus theory in pattern recognition is tested on two data sets: (1) multisource remote sensing and geographic data, and (2) very-high-dimensional remote sensing data. The results obtained using consensus theoretic methods are found to compare favorably with those obtained using well-known pattern recognition methods. The consensus theoretic methods can be applied in cases where the Gaussian maximum likelihood method cannot. Also, the consensus theoretic methods are computationally less demanding than the Gaussian maximum likelihood method and provide a means for weighting data sources differently.< >
doi_str_mv 10.1109/21.156582
format Article
fullrecord <record><control><sourceid>nasa_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_4724111</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>156582</ieee_id><sourcerecordid>19930049023</sourcerecordid><originalsourceid>FETCH-LOGICAL-c296t-3b353120e9a2188d0b38a34d004a064fa82870ab7b9c19a2919b3ea450c05ce73</originalsourceid><addsrcrecordid>eNpFj71PwzAQxS0EEqUwsCKGDiwgpdzZTmKPqOJLqsQCs3VxHNWoTSpfGPjvcRUE0-n0fnfvPSEuEZaIYO8lLrGsSiOPxExiZQppwR6LGQCawupanooz5s-8am3LmbhbDT2Hnr94MW7CkMIY_cJviTl20dMYh36xC-NmaPlcnHS05XDxO-fi4-nxffVSrN-eX1cP68JLW42FalSpUEKwJNGYFhplSOkWQBNUuiMjTQ3U1I31mBmLtlGBdAkeSh9qNRe301-fBuYUOrdPcUfp2yG4Q0kn0U0lM3szsXtiT9suUe8j_x3kvhoRM3Y9YT0xuX5M7NBalSNZkCrLV5McQwj_bpPFD5tyYCE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Consensus theoretic classification methods</title><source>IEEE Electronic Library (IEL)</source><creator>Benediktsson, J.A. ; Swain, P.H.</creator><creatorcontrib>Benediktsson, J.A. ; Swain, P.H.</creatorcontrib><description>Consensus theory is adopted as a means of classifying geographic data from multiple sources. The foundations and usefulness of different consensus theoretic methods are discussed in conjunction with pattern recognition. Weight selections for different data sources are considered and modeling of non-Gaussian data is investigated. The application of consensus theory in pattern recognition is tested on two data sets: (1) multisource remote sensing and geographic data, and (2) very-high-dimensional remote sensing data. The results obtained using consensus theoretic methods are found to compare favorably with those obtained using well-known pattern recognition methods. The consensus theoretic methods can be applied in cases where the Gaussian maximum likelihood method cannot. Also, the consensus theoretic methods are computationally less demanding than the Gaussian maximum likelihood method and provide a means for weighting data sources differently.&lt; &gt;</description><identifier>ISSN: 0018-9472</identifier><identifier>EISSN: 2168-2909</identifier><identifier>DOI: 10.1109/21.156582</identifier><identifier>CODEN: ISYMAW</identifier><language>eng</language><publisher>Legacy CDMS: IEEE</publisher><subject>Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Cybernetics ; Data mining ; Earth Observing System ; Exact sciences and technology ; Laboratories ; Maximum likelihood estimation ; Pattern recognition ; Pattern recognition. Digital image processing. Computational geometry ; Radar remote sensing ; Remote sensing ; Soil ; Statistics ; Testing</subject><ispartof>IEEE transactions on systems, man, and cybernetics, 1992-07, Vol.22 (4), p.688-704</ispartof><rights>1993 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c296t-3b353120e9a2188d0b38a34d004a064fa82870ab7b9c19a2919b3ea450c05ce73</citedby><cites>FETCH-LOGICAL-c296t-3b353120e9a2188d0b38a34d004a064fa82870ab7b9c19a2919b3ea450c05ce73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/156582$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/156582$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=4724111$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Benediktsson, J.A.</creatorcontrib><creatorcontrib>Swain, P.H.</creatorcontrib><title>Consensus theoretic classification methods</title><title>IEEE transactions on systems, man, and cybernetics</title><addtitle>T-SMC</addtitle><description>Consensus theory is adopted as a means of classifying geographic data from multiple sources. The foundations and usefulness of different consensus theoretic methods are discussed in conjunction with pattern recognition. Weight selections for different data sources are considered and modeling of non-Gaussian data is investigated. The application of consensus theory in pattern recognition is tested on two data sets: (1) multisource remote sensing and geographic data, and (2) very-high-dimensional remote sensing data. The results obtained using consensus theoretic methods are found to compare favorably with those obtained using well-known pattern recognition methods. The consensus theoretic methods can be applied in cases where the Gaussian maximum likelihood method cannot. Also, the consensus theoretic methods are computationally less demanding than the Gaussian maximum likelihood method and provide a means for weighting data sources differently.&lt; &gt;</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Cybernetics</subject><subject>Data mining</subject><subject>Earth Observing System</subject><subject>Exact sciences and technology</subject><subject>Laboratories</subject><subject>Maximum likelihood estimation</subject><subject>Pattern recognition</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Radar remote sensing</subject><subject>Remote sensing</subject><subject>Soil</subject><subject>Statistics</subject><subject>Testing</subject><issn>0018-9472</issn><issn>2168-2909</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><sourceid>CYI</sourceid><recordid>eNpFj71PwzAQxS0EEqUwsCKGDiwgpdzZTmKPqOJLqsQCs3VxHNWoTSpfGPjvcRUE0-n0fnfvPSEuEZaIYO8lLrGsSiOPxExiZQppwR6LGQCawupanooz5s-8am3LmbhbDT2Hnr94MW7CkMIY_cJviTl20dMYh36xC-NmaPlcnHS05XDxO-fi4-nxffVSrN-eX1cP68JLW42FalSpUEKwJNGYFhplSOkWQBNUuiMjTQ3U1I31mBmLtlGBdAkeSh9qNRe301-fBuYUOrdPcUfp2yG4Q0kn0U0lM3szsXtiT9suUe8j_x3kvhoRM3Y9YT0xuX5M7NBalSNZkCrLV5McQwj_bpPFD5tyYCE</recordid><startdate>19920701</startdate><enddate>19920701</enddate><creator>Benediktsson, J.A.</creator><creator>Swain, P.H.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>CYE</scope><scope>CYI</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19920701</creationdate><title>Consensus theoretic classification methods</title><author>Benediktsson, J.A. ; Swain, P.H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c296t-3b353120e9a2188d0b38a34d004a064fa82870ab7b9c19a2919b3ea450c05ce73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Cybernetics</topic><topic>Data mining</topic><topic>Earth Observing System</topic><topic>Exact sciences and technology</topic><topic>Laboratories</topic><topic>Maximum likelihood estimation</topic><topic>Pattern recognition</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Radar remote sensing</topic><topic>Remote sensing</topic><topic>Soil</topic><topic>Statistics</topic><topic>Testing</topic><toplevel>online_resources</toplevel><creatorcontrib>Benediktsson, J.A.</creatorcontrib><creatorcontrib>Swain, P.H.</creatorcontrib><collection>NASA Scientific and Technical Information</collection><collection>NASA Technical Reports Server</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>IEEE transactions on systems, man, and cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Benediktsson, J.A.</au><au>Swain, P.H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Consensus theoretic classification methods</atitle><jtitle>IEEE transactions on systems, man, and cybernetics</jtitle><stitle>T-SMC</stitle><date>1992-07-01</date><risdate>1992</risdate><volume>22</volume><issue>4</issue><spage>688</spage><epage>704</epage><pages>688-704</pages><issn>0018-9472</issn><eissn>2168-2909</eissn><coden>ISYMAW</coden><abstract>Consensus theory is adopted as a means of classifying geographic data from multiple sources. The foundations and usefulness of different consensus theoretic methods are discussed in conjunction with pattern recognition. Weight selections for different data sources are considered and modeling of non-Gaussian data is investigated. The application of consensus theory in pattern recognition is tested on two data sets: (1) multisource remote sensing and geographic data, and (2) very-high-dimensional remote sensing data. The results obtained using consensus theoretic methods are found to compare favorably with those obtained using well-known pattern recognition methods. The consensus theoretic methods can be applied in cases where the Gaussian maximum likelihood method cannot. Also, the consensus theoretic methods are computationally less demanding than the Gaussian maximum likelihood method and provide a means for weighting data sources differently.&lt; &gt;</abstract><cop>Legacy CDMS</cop><pub>IEEE</pub><doi>10.1109/21.156582</doi><tpages>17</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9472
ispartof IEEE transactions on systems, man, and cybernetics, 1992-07, Vol.22 (4), p.688-704
issn 0018-9472
2168-2909
language eng
recordid cdi_pascalfrancis_primary_4724111
source IEEE Electronic Library (IEL)
subjects Applied sciences
Artificial intelligence
Computer science
control theory
systems
Cybernetics
Data mining
Earth Observing System
Exact sciences and technology
Laboratories
Maximum likelihood estimation
Pattern recognition
Pattern recognition. Digital image processing. Computational geometry
Radar remote sensing
Remote sensing
Soil
Statistics
Testing
title Consensus theoretic classification methods
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T17%3A21%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-nasa_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Consensus%20theoretic%20classification%20methods&rft.jtitle=IEEE%20transactions%20on%20systems,%20man,%20and%20cybernetics&rft.au=Benediktsson,%20J.A.&rft.date=1992-07-01&rft.volume=22&rft.issue=4&rft.spage=688&rft.epage=704&rft.pages=688-704&rft.issn=0018-9472&rft.eissn=2168-2909&rft.coden=ISYMAW&rft_id=info:doi/10.1109/21.156582&rft_dat=%3Cnasa_RIE%3E19930049023%3C/nasa_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=156582&rfr_iscdi=true