Mobile robot control by neural networks using self-supervised learning

A reinforcement learning algorithm based on supervised learning is described. It uses associative search to discover and learn actions that make the system perform a desired task. One problem with associative search is that the system's actions are often inconsistent. In the searching process,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial electronics (1982) 1992-12, Vol.39 (6), p.537-542
Hauptverfasser: Saga, K., Sugasaka, T., Sekiguchi, M., Nagata, S., Asakawa, K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 542
container_issue 6
container_start_page 537
container_title IEEE transactions on industrial electronics (1982)
container_volume 39
creator Saga, K.
Sugasaka, T.
Sekiguchi, M.
Nagata, S.
Asakawa, K.
description A reinforcement learning algorithm based on supervised learning is described. It uses associative search to discover and learn actions that make the system perform a desired task. One problem with associative search is that the system's actions are often inconsistent. In the searching process, the system's actions are always decided stochastically, so the system cannot perform learned actions more than once, even if they have been determined to be suitable actions for the desired task. To solve this problem, a neural network that can predict an evaluation of an action and control the influence of the stochastic element is used. Results from computer simulations using the algorithms to control a mobile robot are described.< >
doi_str_mv 10.1109/41.170973
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_4444260</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>170973</ieee_id><sourcerecordid>29349647</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-d44bd66dd4fa1d794268bae753b4d08887eb8a81f3e8eaf039c52daedf7709103</originalsourceid><addsrcrecordid>eNqFkDFPwzAQRi0EEqEwsDJlQEgMKXbsxPaIKgpIRSwwR058RgE3Lr4E1H9PqlQwcss33LunuyPknNE5Y1TfCDZnkmrJD0jCikJmWgt1SBKaS5VRKspjcoL4TikTBSsSsnwKdeshjaEOfdqEro_Bp_U27WCIxo_Rf4f4gemAbfeWIniX4bCB-NUi2NSDid3YOCVHzniEs33OyOvy7mXxkK2e7x8Xt6us4Vz2mRWitmVprXCGWalFXqragCx4LSxVSkmolVHMcVBgHOW6KXJrwDo5HsUon5GrybuJ4XMA7Kt1iw14bzoIA1a55kKXQv4PKi5EqfMRvJ7AJgbECK7axHZt4rZitNq9tBKsml46spd7qcHGeBdN17T4OyDGysvdkhcT1gLAn25y_ACUE35C</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28344692</pqid></control><display><type>article</type><title>Mobile robot control by neural networks using self-supervised learning</title><source>IEEE Electronic Library (IEL)</source><creator>Saga, K. ; Sugasaka, T. ; Sekiguchi, M. ; Nagata, S. ; Asakawa, K.</creator><creatorcontrib>Saga, K. ; Sugasaka, T. ; Sekiguchi, M. ; Nagata, S. ; Asakawa, K.</creatorcontrib><description>A reinforcement learning algorithm based on supervised learning is described. It uses associative search to discover and learn actions that make the system perform a desired task. One problem with associative search is that the system's actions are often inconsistent. In the searching process, the system's actions are always decided stochastically, so the system cannot perform learned actions more than once, even if they have been determined to be suitable actions for the desired task. To solve this problem, a neural network that can predict an evaluation of an action and control the influence of the stochastic element is used. Results from computer simulations using the algorithms to control a mobile robot are described.&lt; &gt;</description><identifier>ISSN: 0278-0046</identifier><identifier>EISSN: 1557-9948</identifier><identifier>DOI: 10.1109/41.170973</identifier><identifier>CODEN: ITIED6</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Computer science; control theory; systems ; Control systems ; Control theory. Systems ; Error correction ; Exact sciences and technology ; Mobile robots ; Neural networks ; Noise generators ; Performance evaluation ; Robot control ; Robotics ; Stochastic systems ; Supervised learning ; Training data</subject><ispartof>IEEE transactions on industrial electronics (1982), 1992-12, Vol.39 (6), p.537-542</ispartof><rights>1993 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-d44bd66dd4fa1d794268bae753b4d08887eb8a81f3e8eaf039c52daedf7709103</citedby><cites>FETCH-LOGICAL-c337t-d44bd66dd4fa1d794268bae753b4d08887eb8a81f3e8eaf039c52daedf7709103</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/170973$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/170973$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=4444260$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Saga, K.</creatorcontrib><creatorcontrib>Sugasaka, T.</creatorcontrib><creatorcontrib>Sekiguchi, M.</creatorcontrib><creatorcontrib>Nagata, S.</creatorcontrib><creatorcontrib>Asakawa, K.</creatorcontrib><title>Mobile robot control by neural networks using self-supervised learning</title><title>IEEE transactions on industrial electronics (1982)</title><addtitle>TIE</addtitle><description>A reinforcement learning algorithm based on supervised learning is described. It uses associative search to discover and learn actions that make the system perform a desired task. One problem with associative search is that the system's actions are often inconsistent. In the searching process, the system's actions are always decided stochastically, so the system cannot perform learned actions more than once, even if they have been determined to be suitable actions for the desired task. To solve this problem, a neural network that can predict an evaluation of an action and control the influence of the stochastic element is used. Results from computer simulations using the algorithms to control a mobile robot are described.&lt; &gt;</description><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Control systems</subject><subject>Control theory. Systems</subject><subject>Error correction</subject><subject>Exact sciences and technology</subject><subject>Mobile robots</subject><subject>Neural networks</subject><subject>Noise generators</subject><subject>Performance evaluation</subject><subject>Robot control</subject><subject>Robotics</subject><subject>Stochastic systems</subject><subject>Supervised learning</subject><subject>Training data</subject><issn>0278-0046</issn><issn>1557-9948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><recordid>eNqFkDFPwzAQRi0EEqEwsDJlQEgMKXbsxPaIKgpIRSwwR058RgE3Lr4E1H9PqlQwcss33LunuyPknNE5Y1TfCDZnkmrJD0jCikJmWgt1SBKaS5VRKspjcoL4TikTBSsSsnwKdeshjaEOfdqEro_Bp_U27WCIxo_Rf4f4gemAbfeWIniX4bCB-NUi2NSDid3YOCVHzniEs33OyOvy7mXxkK2e7x8Xt6us4Vz2mRWitmVprXCGWalFXqragCx4LSxVSkmolVHMcVBgHOW6KXJrwDo5HsUon5GrybuJ4XMA7Kt1iw14bzoIA1a55kKXQv4PKi5EqfMRvJ7AJgbECK7axHZt4rZitNq9tBKsml46spd7qcHGeBdN17T4OyDGysvdkhcT1gLAn25y_ACUE35C</recordid><startdate>19921201</startdate><enddate>19921201</enddate><creator>Saga, K.</creator><creator>Sugasaka, T.</creator><creator>Sekiguchi, M.</creator><creator>Nagata, S.</creator><creator>Asakawa, K.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>7TB</scope><scope>FR3</scope></search><sort><creationdate>19921201</creationdate><title>Mobile robot control by neural networks using self-supervised learning</title><author>Saga, K. ; Sugasaka, T. ; Sekiguchi, M. ; Nagata, S. ; Asakawa, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-d44bd66dd4fa1d794268bae753b4d08887eb8a81f3e8eaf039c52daedf7709103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Control systems</topic><topic>Control theory. Systems</topic><topic>Error correction</topic><topic>Exact sciences and technology</topic><topic>Mobile robots</topic><topic>Neural networks</topic><topic>Noise generators</topic><topic>Performance evaluation</topic><topic>Robot control</topic><topic>Robotics</topic><topic>Stochastic systems</topic><topic>Supervised learning</topic><topic>Training data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saga, K.</creatorcontrib><creatorcontrib>Sugasaka, T.</creatorcontrib><creatorcontrib>Sekiguchi, M.</creatorcontrib><creatorcontrib>Nagata, S.</creatorcontrib><creatorcontrib>Asakawa, K.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on industrial electronics (1982)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Saga, K.</au><au>Sugasaka, T.</au><au>Sekiguchi, M.</au><au>Nagata, S.</au><au>Asakawa, K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mobile robot control by neural networks using self-supervised learning</atitle><jtitle>IEEE transactions on industrial electronics (1982)</jtitle><stitle>TIE</stitle><date>1992-12-01</date><risdate>1992</risdate><volume>39</volume><issue>6</issue><spage>537</spage><epage>542</epage><pages>537-542</pages><issn>0278-0046</issn><eissn>1557-9948</eissn><coden>ITIED6</coden><abstract>A reinforcement learning algorithm based on supervised learning is described. It uses associative search to discover and learn actions that make the system perform a desired task. One problem with associative search is that the system's actions are often inconsistent. In the searching process, the system's actions are always decided stochastically, so the system cannot perform learned actions more than once, even if they have been determined to be suitable actions for the desired task. To solve this problem, a neural network that can predict an evaluation of an action and control the influence of the stochastic element is used. Results from computer simulations using the algorithms to control a mobile robot are described.&lt; &gt;</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/41.170973</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0278-0046
ispartof IEEE transactions on industrial electronics (1982), 1992-12, Vol.39 (6), p.537-542
issn 0278-0046
1557-9948
language eng
recordid cdi_pascalfrancis_primary_4444260
source IEEE Electronic Library (IEL)
subjects Applied sciences
Computer science
control theory
systems
Control systems
Control theory. Systems
Error correction
Exact sciences and technology
Mobile robots
Neural networks
Noise generators
Performance evaluation
Robot control
Robotics
Stochastic systems
Supervised learning
Training data
title Mobile robot control by neural networks using self-supervised learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T18%3A24%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mobile%20robot%20control%20by%20neural%20networks%20using%20self-supervised%20learning&rft.jtitle=IEEE%20transactions%20on%20industrial%20electronics%20(1982)&rft.au=Saga,%20K.&rft.date=1992-12-01&rft.volume=39&rft.issue=6&rft.spage=537&rft.epage=542&rft.pages=537-542&rft.issn=0278-0046&rft.eissn=1557-9948&rft.coden=ITIED6&rft_id=info:doi/10.1109/41.170973&rft_dat=%3Cproquest_RIE%3E29349647%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28344692&rft_id=info:pmid/&rft_ieee_id=170973&rfr_iscdi=true