Martingale approach to limit theorems for jump processes

We consider the weak convergence of laws of càdiàg processes determined by a sequence of operators with singularly perturbed terms. We study the problem in the martingale approach, which was formulated to establish weak limit theorems for continuous processes by Papanicolaou, Stroock and Varadhan. H...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Stochastics and stochastics reports 1994-09, Vol.50 (1-2), p.35-64
Hauptverfasser: Fujiwara, Tsukasa, Tomisaki, Matsuyo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 64
container_issue 1-2
container_start_page 35
container_title Stochastics and stochastics reports
container_volume 50
creator Fujiwara, Tsukasa
Tomisaki, Matsuyo
description We consider the weak convergence of laws of càdiàg processes determined by a sequence of operators with singularly perturbed terms. We study the problem in the martingale approach, which was formulated to establish weak limit theorems for continuous processes by Papanicolaou, Stroock and Varadhan. However, in this paper, limit processes are not necessarily continuous but càdiàg. In particular, we consider a homogenization problem of càdiàg processes in the framework of martingale problem.
doi_str_mv 10.1080/17442509408833927
format Article
fullrecord <record><control><sourceid>pascalfrancis_cross</sourceid><recordid>TN_cdi_pascalfrancis_primary_4235954</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4235954</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2384-e4be6bb73f711c9dc5f9491668b822f0fa7fdd71df036782d06ef8420e74645a3</originalsourceid><addsrcrecordid>eNp1jz1PwzAQQC0EEqXwA9g8sAbOH_GHxIIqKEhFLDBHF8emqZI6soNQ_z2pCiyI6W54706PkEsG1wwM3DAtJS_BSjBGCMv1EZkx4LYAIdXxfpdlwRi3p-Qs5w0ACAAzI-YZ09hu37HzFIchRXRrOkbatX070nHtY_J9piEmuvnoBzoRzufs8zk5Cdhlf_E95-Tt4f518VisXpZPi7tV4bgwsvCy9qqutQiaMWcbVwYrLVPK1IbzAAF1aBrNmgBCacMbUD4YycFrqWSJYk7Y4a5LMefkQzWktse0qxhU-_TqT_rkXB2cAbPDLiTcujb_ipKL0pZywm4PWLud-nr8jKlrqhF3XUw_jvj_yxchyWrM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Martingale approach to limit theorems for jump processes</title><source>Taylor &amp; Francis Journals Complete</source><creator>Fujiwara, Tsukasa ; Tomisaki, Matsuyo</creator><creatorcontrib>Fujiwara, Tsukasa ; Tomisaki, Matsuyo</creatorcontrib><description>We consider the weak convergence of laws of càdiàg processes determined by a sequence of operators with singularly perturbed terms. We study the problem in the martingale approach, which was formulated to establish weak limit theorems for continuous processes by Papanicolaou, Stroock and Varadhan. However, in this paper, limit processes are not necessarily continuous but càdiàg. In particular, we consider a homogenization problem of càdiàg processes in the framework of martingale problem.</description><identifier>ISSN: 1045-1129</identifier><identifier>EISSN: 1029-0346</identifier><identifier>DOI: 10.1080/17442509408833927</identifier><identifier>CODEN: SSTREY</identifier><language>eng</language><publisher>Abingdon: Gordon and Breach Science Publishers</publisher><subject>càdiàg process ; Exact sciences and technology ; homogenization ; Limit theorem ; Lévy operator ; martingale problem ; Mathematics ; Probability and statistics ; Probability theory and stochastic processes ; Sciences and techniques of general use ; Stochastic processes ; weak convergence</subject><ispartof>Stochastics and stochastics reports, 1994-09, Vol.50 (1-2), p.35-64</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 1994</rights><rights>1994 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2384-e4be6bb73f711c9dc5f9491668b822f0fa7fdd71df036782d06ef8420e74645a3</citedby><cites>FETCH-LOGICAL-c2384-e4be6bb73f711c9dc5f9491668b822f0fa7fdd71df036782d06ef8420e74645a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/17442509408833927$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/17442509408833927$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,59620,60409</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=4235954$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Fujiwara, Tsukasa</creatorcontrib><creatorcontrib>Tomisaki, Matsuyo</creatorcontrib><title>Martingale approach to limit theorems for jump processes</title><title>Stochastics and stochastics reports</title><description>We consider the weak convergence of laws of càdiàg processes determined by a sequence of operators with singularly perturbed terms. We study the problem in the martingale approach, which was formulated to establish weak limit theorems for continuous processes by Papanicolaou, Stroock and Varadhan. However, in this paper, limit processes are not necessarily continuous but càdiàg. In particular, we consider a homogenization problem of càdiàg processes in the framework of martingale problem.</description><subject>càdiàg process</subject><subject>Exact sciences and technology</subject><subject>homogenization</subject><subject>Limit theorem</subject><subject>Lévy operator</subject><subject>martingale problem</subject><subject>Mathematics</subject><subject>Probability and statistics</subject><subject>Probability theory and stochastic processes</subject><subject>Sciences and techniques of general use</subject><subject>Stochastic processes</subject><subject>weak convergence</subject><issn>1045-1129</issn><issn>1029-0346</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><recordid>eNp1jz1PwzAQQC0EEqXwA9g8sAbOH_GHxIIqKEhFLDBHF8emqZI6soNQ_z2pCiyI6W54706PkEsG1wwM3DAtJS_BSjBGCMv1EZkx4LYAIdXxfpdlwRi3p-Qs5w0ACAAzI-YZ09hu37HzFIchRXRrOkbatX070nHtY_J9piEmuvnoBzoRzufs8zk5Cdhlf_E95-Tt4f518VisXpZPi7tV4bgwsvCy9qqutQiaMWcbVwYrLVPK1IbzAAF1aBrNmgBCacMbUD4YycFrqWSJYk7Y4a5LMefkQzWktse0qxhU-_TqT_rkXB2cAbPDLiTcujb_ipKL0pZywm4PWLud-nr8jKlrqhF3XUw_jvj_yxchyWrM</recordid><startdate>199409</startdate><enddate>199409</enddate><creator>Fujiwara, Tsukasa</creator><creator>Tomisaki, Matsuyo</creator><general>Gordon and Breach Science Publishers</general><general>Taylor &amp; Francis</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>199409</creationdate><title>Martingale approach to limit theorems for jump processes</title><author>Fujiwara, Tsukasa ; Tomisaki, Matsuyo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2384-e4be6bb73f711c9dc5f9491668b822f0fa7fdd71df036782d06ef8420e74645a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>càdiàg process</topic><topic>Exact sciences and technology</topic><topic>homogenization</topic><topic>Limit theorem</topic><topic>Lévy operator</topic><topic>martingale problem</topic><topic>Mathematics</topic><topic>Probability and statistics</topic><topic>Probability theory and stochastic processes</topic><topic>Sciences and techniques of general use</topic><topic>Stochastic processes</topic><topic>weak convergence</topic><toplevel>online_resources</toplevel><creatorcontrib>Fujiwara, Tsukasa</creatorcontrib><creatorcontrib>Tomisaki, Matsuyo</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Stochastics and stochastics reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fujiwara, Tsukasa</au><au>Tomisaki, Matsuyo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Martingale approach to limit theorems for jump processes</atitle><jtitle>Stochastics and stochastics reports</jtitle><date>1994-09</date><risdate>1994</risdate><volume>50</volume><issue>1-2</issue><spage>35</spage><epage>64</epage><pages>35-64</pages><issn>1045-1129</issn><eissn>1029-0346</eissn><coden>SSTREY</coden><abstract>We consider the weak convergence of laws of càdiàg processes determined by a sequence of operators with singularly perturbed terms. We study the problem in the martingale approach, which was formulated to establish weak limit theorems for continuous processes by Papanicolaou, Stroock and Varadhan. However, in this paper, limit processes are not necessarily continuous but càdiàg. In particular, we consider a homogenization problem of càdiàg processes in the framework of martingale problem.</abstract><cop>Abingdon</cop><pub>Gordon and Breach Science Publishers</pub><doi>10.1080/17442509408833927</doi><tpages>30</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1045-1129
ispartof Stochastics and stochastics reports, 1994-09, Vol.50 (1-2), p.35-64
issn 1045-1129
1029-0346
language eng
recordid cdi_pascalfrancis_primary_4235954
source Taylor & Francis Journals Complete
subjects càdiàg process
Exact sciences and technology
homogenization
Limit theorem
Lévy operator
martingale problem
Mathematics
Probability and statistics
Probability theory and stochastic processes
Sciences and techniques of general use
Stochastic processes
weak convergence
title Martingale approach to limit theorems for jump processes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T21%3A34%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Martingale%20approach%20to%20limit%20theorems%20for%20jump%20processes&rft.jtitle=Stochastics%20and%20stochastics%20reports&rft.au=Fujiwara,%20Tsukasa&rft.date=1994-09&rft.volume=50&rft.issue=1-2&rft.spage=35&rft.epage=64&rft.pages=35-64&rft.issn=1045-1129&rft.eissn=1029-0346&rft.coden=SSTREY&rft_id=info:doi/10.1080/17442509408833927&rft_dat=%3Cpascalfrancis_cross%3E4235954%3C/pascalfrancis_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true