Martingale approach to limit theorems for jump processes
We consider the weak convergence of laws of càdiàg processes determined by a sequence of operators with singularly perturbed terms. We study the problem in the martingale approach, which was formulated to establish weak limit theorems for continuous processes by Papanicolaou, Stroock and Varadhan. H...
Gespeichert in:
Veröffentlicht in: | Stochastics and stochastics reports 1994-09, Vol.50 (1-2), p.35-64 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 64 |
---|---|
container_issue | 1-2 |
container_start_page | 35 |
container_title | Stochastics and stochastics reports |
container_volume | 50 |
creator | Fujiwara, Tsukasa Tomisaki, Matsuyo |
description | We consider the weak convergence of laws of càdiàg processes determined by a sequence of operators with singularly perturbed terms. We study the problem in the martingale approach, which was formulated to establish weak limit theorems for continuous processes by Papanicolaou, Stroock and Varadhan. However, in this paper, limit processes are not necessarily continuous but càdiàg. In particular, we consider a homogenization problem of càdiàg processes in the framework of martingale problem. |
doi_str_mv | 10.1080/17442509408833927 |
format | Article |
fullrecord | <record><control><sourceid>pascalfrancis_cross</sourceid><recordid>TN_cdi_pascalfrancis_primary_4235954</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4235954</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2384-e4be6bb73f711c9dc5f9491668b822f0fa7fdd71df036782d06ef8420e74645a3</originalsourceid><addsrcrecordid>eNp1jz1PwzAQQC0EEqXwA9g8sAbOH_GHxIIqKEhFLDBHF8emqZI6soNQ_z2pCiyI6W54706PkEsG1wwM3DAtJS_BSjBGCMv1EZkx4LYAIdXxfpdlwRi3p-Qs5w0ACAAzI-YZ09hu37HzFIchRXRrOkbatX070nHtY_J9piEmuvnoBzoRzufs8zk5Cdhlf_E95-Tt4f518VisXpZPi7tV4bgwsvCy9qqutQiaMWcbVwYrLVPK1IbzAAF1aBrNmgBCacMbUD4YycFrqWSJYk7Y4a5LMefkQzWktse0qxhU-_TqT_rkXB2cAbPDLiTcujb_ipKL0pZywm4PWLud-nr8jKlrqhF3XUw_jvj_yxchyWrM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Martingale approach to limit theorems for jump processes</title><source>Taylor & Francis Journals Complete</source><creator>Fujiwara, Tsukasa ; Tomisaki, Matsuyo</creator><creatorcontrib>Fujiwara, Tsukasa ; Tomisaki, Matsuyo</creatorcontrib><description>We consider the weak convergence of laws of càdiàg processes determined by a sequence of operators with singularly perturbed terms. We study the problem in the martingale approach, which was formulated to establish weak limit theorems for continuous processes by Papanicolaou, Stroock and Varadhan. However, in this paper, limit processes are not necessarily continuous but càdiàg. In particular, we consider a homogenization problem of càdiàg processes in the framework of martingale problem.</description><identifier>ISSN: 1045-1129</identifier><identifier>EISSN: 1029-0346</identifier><identifier>DOI: 10.1080/17442509408833927</identifier><identifier>CODEN: SSTREY</identifier><language>eng</language><publisher>Abingdon: Gordon and Breach Science Publishers</publisher><subject>càdiàg process ; Exact sciences and technology ; homogenization ; Limit theorem ; Lévy operator ; martingale problem ; Mathematics ; Probability and statistics ; Probability theory and stochastic processes ; Sciences and techniques of general use ; Stochastic processes ; weak convergence</subject><ispartof>Stochastics and stochastics reports, 1994-09, Vol.50 (1-2), p.35-64</ispartof><rights>Copyright Taylor & Francis Group, LLC 1994</rights><rights>1994 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2384-e4be6bb73f711c9dc5f9491668b822f0fa7fdd71df036782d06ef8420e74645a3</citedby><cites>FETCH-LOGICAL-c2384-e4be6bb73f711c9dc5f9491668b822f0fa7fdd71df036782d06ef8420e74645a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/17442509408833927$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/17442509408833927$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,59620,60409</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=4235954$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Fujiwara, Tsukasa</creatorcontrib><creatorcontrib>Tomisaki, Matsuyo</creatorcontrib><title>Martingale approach to limit theorems for jump processes</title><title>Stochastics and stochastics reports</title><description>We consider the weak convergence of laws of càdiàg processes determined by a sequence of operators with singularly perturbed terms. We study the problem in the martingale approach, which was formulated to establish weak limit theorems for continuous processes by Papanicolaou, Stroock and Varadhan. However, in this paper, limit processes are not necessarily continuous but càdiàg. In particular, we consider a homogenization problem of càdiàg processes in the framework of martingale problem.</description><subject>càdiàg process</subject><subject>Exact sciences and technology</subject><subject>homogenization</subject><subject>Limit theorem</subject><subject>Lévy operator</subject><subject>martingale problem</subject><subject>Mathematics</subject><subject>Probability and statistics</subject><subject>Probability theory and stochastic processes</subject><subject>Sciences and techniques of general use</subject><subject>Stochastic processes</subject><subject>weak convergence</subject><issn>1045-1129</issn><issn>1029-0346</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><recordid>eNp1jz1PwzAQQC0EEqXwA9g8sAbOH_GHxIIqKEhFLDBHF8emqZI6soNQ_z2pCiyI6W54706PkEsG1wwM3DAtJS_BSjBGCMv1EZkx4LYAIdXxfpdlwRi3p-Qs5w0ACAAzI-YZ09hu37HzFIchRXRrOkbatX070nHtY_J9piEmuvnoBzoRzufs8zk5Cdhlf_E95-Tt4f518VisXpZPi7tV4bgwsvCy9qqutQiaMWcbVwYrLVPK1IbzAAF1aBrNmgBCacMbUD4YycFrqWSJYk7Y4a5LMefkQzWktse0qxhU-_TqT_rkXB2cAbPDLiTcujb_ipKL0pZywm4PWLud-nr8jKlrqhF3XUw_jvj_yxchyWrM</recordid><startdate>199409</startdate><enddate>199409</enddate><creator>Fujiwara, Tsukasa</creator><creator>Tomisaki, Matsuyo</creator><general>Gordon and Breach Science Publishers</general><general>Taylor & Francis</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>199409</creationdate><title>Martingale approach to limit theorems for jump processes</title><author>Fujiwara, Tsukasa ; Tomisaki, Matsuyo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2384-e4be6bb73f711c9dc5f9491668b822f0fa7fdd71df036782d06ef8420e74645a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>càdiàg process</topic><topic>Exact sciences and technology</topic><topic>homogenization</topic><topic>Limit theorem</topic><topic>Lévy operator</topic><topic>martingale problem</topic><topic>Mathematics</topic><topic>Probability and statistics</topic><topic>Probability theory and stochastic processes</topic><topic>Sciences and techniques of general use</topic><topic>Stochastic processes</topic><topic>weak convergence</topic><toplevel>online_resources</toplevel><creatorcontrib>Fujiwara, Tsukasa</creatorcontrib><creatorcontrib>Tomisaki, Matsuyo</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Stochastics and stochastics reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fujiwara, Tsukasa</au><au>Tomisaki, Matsuyo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Martingale approach to limit theorems for jump processes</atitle><jtitle>Stochastics and stochastics reports</jtitle><date>1994-09</date><risdate>1994</risdate><volume>50</volume><issue>1-2</issue><spage>35</spage><epage>64</epage><pages>35-64</pages><issn>1045-1129</issn><eissn>1029-0346</eissn><coden>SSTREY</coden><abstract>We consider the weak convergence of laws of càdiàg processes determined by a sequence of operators with singularly perturbed terms. We study the problem in the martingale approach, which was formulated to establish weak limit theorems for continuous processes by Papanicolaou, Stroock and Varadhan. However, in this paper, limit processes are not necessarily continuous but càdiàg. In particular, we consider a homogenization problem of càdiàg processes in the framework of martingale problem.</abstract><cop>Abingdon</cop><pub>Gordon and Breach Science Publishers</pub><doi>10.1080/17442509408833927</doi><tpages>30</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1045-1129 |
ispartof | Stochastics and stochastics reports, 1994-09, Vol.50 (1-2), p.35-64 |
issn | 1045-1129 1029-0346 |
language | eng |
recordid | cdi_pascalfrancis_primary_4235954 |
source | Taylor & Francis Journals Complete |
subjects | càdiàg process Exact sciences and technology homogenization Limit theorem Lévy operator martingale problem Mathematics Probability and statistics Probability theory and stochastic processes Sciences and techniques of general use Stochastic processes weak convergence |
title | Martingale approach to limit theorems for jump processes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T21%3A34%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Martingale%20approach%20to%20limit%20theorems%20for%20jump%20processes&rft.jtitle=Stochastics%20and%20stochastics%20reports&rft.au=Fujiwara,%20Tsukasa&rft.date=1994-09&rft.volume=50&rft.issue=1-2&rft.spage=35&rft.epage=64&rft.pages=35-64&rft.issn=1045-1129&rft.eissn=1029-0346&rft.coden=SSTREY&rft_id=info:doi/10.1080/17442509408833927&rft_dat=%3Cpascalfrancis_cross%3E4235954%3C/pascalfrancis_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |