Robust stability of discrete-time systems under parametric perturbations

Stability robustness analysis of a system under parametric perturbations is concerned with characterizing a region in the parameter space in which the system remains stable. In this paper, two methods are presented to estimate the stability robustness region of a linear, time-invariant, discrete-tim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control 1994-05, Vol.39 (5), p.991-995
Hauptverfasser: Karan, M., Sezer, M.E., Ocali, O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 995
container_issue 5
container_start_page 991
container_title IEEE transactions on automatic control
container_volume 39
creator Karan, M.
Sezer, M.E.
Ocali, O.
description Stability robustness analysis of a system under parametric perturbations is concerned with characterizing a region in the parameter space in which the system remains stable. In this paper, two methods are presented to estimate the stability robustness region of a linear, time-invariant, discrete-time system under multiparameter additive perturbations. An inherent difficulty, which originates from the nonlinear appearance of the perturbation parameters in the inequalities defining the robustness region, is resolved by transforming the problem to stability of a higher order continuous-time system. This allows for application of the available results on stability robustness of continuous-time systems to discrete-time systems. The results are also applied to stability analysis of discrete-time interconnected systems, where the interconnections are treated as perturbations on decoupled stable subsystems.< >
doi_str_mv 10.1109/9.284877
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_4157319</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>284877</ieee_id><sourcerecordid>29016660</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-c271c7d752a5778755465789bab97d5e040ed86c2fd8e7adf35750441e58fb9c3</originalsourceid><addsrcrecordid>eNqFkM1LxDAQxYMouK6CZ089iHjpmqRNkxxF1BUWBNFzSdMJRPplJj3sf2-ky149DcP8ePPeI-Sa0Q1jVD_oDVelkvKErJgQKueCF6dkRSlTueaqOicXiN9prcqSrcj2Y2xmjBlG0_jOx302uqz1aANEyKPvIcM9Rugxm4cWQjaZYHqIwdtsghDn0JjoxwEvyZkzHcLVYa7J18vz59M2372_vj097nJbVDrmlktmZSsFN0JKJYUoKyGVbkyjZSuAlhRaVVnuWgXStK4QUtBkFYRyjbbFmtwtulMYf2bAWPfJLXSdGWCcseY6Rasq-j-o0l9alAm8X0AbRsQArp6C703Y14zWf53Wul46TejtQdOgNZ0LZrAej3zJhCyYTtjNgnkAOF4PGr-7kn5P</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28578034</pqid></control><display><type>article</type><title>Robust stability of discrete-time systems under parametric perturbations</title><source>IEEE Electronic Library (IEL)</source><creator>Karan, M. ; Sezer, M.E. ; Ocali, O.</creator><creatorcontrib>Karan, M. ; Sezer, M.E. ; Ocali, O.</creatorcontrib><description>Stability robustness analysis of a system under parametric perturbations is concerned with characterizing a region in the parameter space in which the system remains stable. In this paper, two methods are presented to estimate the stability robustness region of a linear, time-invariant, discrete-time system under multiparameter additive perturbations. An inherent difficulty, which originates from the nonlinear appearance of the perturbation parameters in the inequalities defining the robustness region, is resolved by transforming the problem to stability of a higher order continuous-time system. This allows for application of the available results on stability robustness of continuous-time systems to discrete-time systems. The results are also applied to stability analysis of discrete-time interconnected systems, where the interconnections are treated as perturbations on decoupled stable subsystems.&lt; &gt;</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/9.284877</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Computer science; control theory; systems ; Control system analysis ; Control theory. Systems ; Eigenvalues and eigenfunctions ; Equations ; Exact sciences and technology ; Interconnected systems ; Lyapunov method ; Robust stability ; Robustness ; Stability analysis ; Symmetric matrices ; Systems engineering and theory ; Uncertainty</subject><ispartof>IEEE transactions on automatic control, 1994-05, Vol.39 (5), p.991-995</ispartof><rights>1994 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c369t-c271c7d752a5778755465789bab97d5e040ed86c2fd8e7adf35750441e58fb9c3</citedby><cites>FETCH-LOGICAL-c369t-c271c7d752a5778755465789bab97d5e040ed86c2fd8e7adf35750441e58fb9c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/284877$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/284877$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=4157319$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Karan, M.</creatorcontrib><creatorcontrib>Sezer, M.E.</creatorcontrib><creatorcontrib>Ocali, O.</creatorcontrib><title>Robust stability of discrete-time systems under parametric perturbations</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>Stability robustness analysis of a system under parametric perturbations is concerned with characterizing a region in the parameter space in which the system remains stable. In this paper, two methods are presented to estimate the stability robustness region of a linear, time-invariant, discrete-time system under multiparameter additive perturbations. An inherent difficulty, which originates from the nonlinear appearance of the perturbation parameters in the inequalities defining the robustness region, is resolved by transforming the problem to stability of a higher order continuous-time system. This allows for application of the available results on stability robustness of continuous-time systems to discrete-time systems. The results are also applied to stability analysis of discrete-time interconnected systems, where the interconnections are treated as perturbations on decoupled stable subsystems.&lt; &gt;</description><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Control system analysis</subject><subject>Control theory. Systems</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Equations</subject><subject>Exact sciences and technology</subject><subject>Interconnected systems</subject><subject>Lyapunov method</subject><subject>Robust stability</subject><subject>Robustness</subject><subject>Stability analysis</subject><subject>Symmetric matrices</subject><subject>Systems engineering and theory</subject><subject>Uncertainty</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><recordid>eNqFkM1LxDAQxYMouK6CZ089iHjpmqRNkxxF1BUWBNFzSdMJRPplJj3sf2-ky149DcP8ePPeI-Sa0Q1jVD_oDVelkvKErJgQKueCF6dkRSlTueaqOicXiN9prcqSrcj2Y2xmjBlG0_jOx302uqz1aANEyKPvIcM9Rugxm4cWQjaZYHqIwdtsghDn0JjoxwEvyZkzHcLVYa7J18vz59M2372_vj097nJbVDrmlktmZSsFN0JKJYUoKyGVbkyjZSuAlhRaVVnuWgXStK4QUtBkFYRyjbbFmtwtulMYf2bAWPfJLXSdGWCcseY6Rasq-j-o0l9alAm8X0AbRsQArp6C703Y14zWf53Wul46TejtQdOgNZ0LZrAej3zJhCyYTtjNgnkAOF4PGr-7kn5P</recordid><startdate>19940501</startdate><enddate>19940501</enddate><creator>Karan, M.</creator><creator>Sezer, M.E.</creator><creator>Ocali, O.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>H8D</scope></search><sort><creationdate>19940501</creationdate><title>Robust stability of discrete-time systems under parametric perturbations</title><author>Karan, M. ; Sezer, M.E. ; Ocali, O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-c271c7d752a5778755465789bab97d5e040ed86c2fd8e7adf35750441e58fb9c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Control system analysis</topic><topic>Control theory. Systems</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Equations</topic><topic>Exact sciences and technology</topic><topic>Interconnected systems</topic><topic>Lyapunov method</topic><topic>Robust stability</topic><topic>Robustness</topic><topic>Stability analysis</topic><topic>Symmetric matrices</topic><topic>Systems engineering and theory</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karan, M.</creatorcontrib><creatorcontrib>Sezer, M.E.</creatorcontrib><creatorcontrib>Ocali, O.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Aerospace Database</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Karan, M.</au><au>Sezer, M.E.</au><au>Ocali, O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust stability of discrete-time systems under parametric perturbations</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>1994-05-01</date><risdate>1994</risdate><volume>39</volume><issue>5</issue><spage>991</spage><epage>995</epage><pages>991-995</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>Stability robustness analysis of a system under parametric perturbations is concerned with characterizing a region in the parameter space in which the system remains stable. In this paper, two methods are presented to estimate the stability robustness region of a linear, time-invariant, discrete-time system under multiparameter additive perturbations. An inherent difficulty, which originates from the nonlinear appearance of the perturbation parameters in the inequalities defining the robustness region, is resolved by transforming the problem to stability of a higher order continuous-time system. This allows for application of the available results on stability robustness of continuous-time systems to discrete-time systems. The results are also applied to stability analysis of discrete-time interconnected systems, where the interconnections are treated as perturbations on decoupled stable subsystems.&lt; &gt;</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/9.284877</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9286
ispartof IEEE transactions on automatic control, 1994-05, Vol.39 (5), p.991-995
issn 0018-9286
1558-2523
language eng
recordid cdi_pascalfrancis_primary_4157319
source IEEE Electronic Library (IEL)
subjects Applied sciences
Computer science
control theory
systems
Control system analysis
Control theory. Systems
Eigenvalues and eigenfunctions
Equations
Exact sciences and technology
Interconnected systems
Lyapunov method
Robust stability
Robustness
Stability analysis
Symmetric matrices
Systems engineering and theory
Uncertainty
title Robust stability of discrete-time systems under parametric perturbations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T09%3A24%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20stability%20of%20discrete-time%20systems%20under%20parametric%20perturbations&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Karan,%20M.&rft.date=1994-05-01&rft.volume=39&rft.issue=5&rft.spage=991&rft.epage=995&rft.pages=991-995&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/9.284877&rft_dat=%3Cproquest_RIE%3E29016660%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28578034&rft_id=info:pmid/&rft_ieee_id=284877&rfr_iscdi=true