Robust stability of discrete-time systems under parametric perturbations
Stability robustness analysis of a system under parametric perturbations is concerned with characterizing a region in the parameter space in which the system remains stable. In this paper, two methods are presented to estimate the stability robustness region of a linear, time-invariant, discrete-tim...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on automatic control 1994-05, Vol.39 (5), p.991-995 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 995 |
---|---|
container_issue | 5 |
container_start_page | 991 |
container_title | IEEE transactions on automatic control |
container_volume | 39 |
creator | Karan, M. Sezer, M.E. Ocali, O. |
description | Stability robustness analysis of a system under parametric perturbations is concerned with characterizing a region in the parameter space in which the system remains stable. In this paper, two methods are presented to estimate the stability robustness region of a linear, time-invariant, discrete-time system under multiparameter additive perturbations. An inherent difficulty, which originates from the nonlinear appearance of the perturbation parameters in the inequalities defining the robustness region, is resolved by transforming the problem to stability of a higher order continuous-time system. This allows for application of the available results on stability robustness of continuous-time systems to discrete-time systems. The results are also applied to stability analysis of discrete-time interconnected systems, where the interconnections are treated as perturbations on decoupled stable subsystems.< > |
doi_str_mv | 10.1109/9.284877 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_4157319</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>284877</ieee_id><sourcerecordid>29016660</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-c271c7d752a5778755465789bab97d5e040ed86c2fd8e7adf35750441e58fb9c3</originalsourceid><addsrcrecordid>eNqFkM1LxDAQxYMouK6CZ089iHjpmqRNkxxF1BUWBNFzSdMJRPplJj3sf2-ky149DcP8ePPeI-Sa0Q1jVD_oDVelkvKErJgQKueCF6dkRSlTueaqOicXiN9prcqSrcj2Y2xmjBlG0_jOx302uqz1aANEyKPvIcM9Rugxm4cWQjaZYHqIwdtsghDn0JjoxwEvyZkzHcLVYa7J18vz59M2372_vj097nJbVDrmlktmZSsFN0JKJYUoKyGVbkyjZSuAlhRaVVnuWgXStK4QUtBkFYRyjbbFmtwtulMYf2bAWPfJLXSdGWCcseY6Rasq-j-o0l9alAm8X0AbRsQArp6C703Y14zWf53Wul46TejtQdOgNZ0LZrAej3zJhCyYTtjNgnkAOF4PGr-7kn5P</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28578034</pqid></control><display><type>article</type><title>Robust stability of discrete-time systems under parametric perturbations</title><source>IEEE Electronic Library (IEL)</source><creator>Karan, M. ; Sezer, M.E. ; Ocali, O.</creator><creatorcontrib>Karan, M. ; Sezer, M.E. ; Ocali, O.</creatorcontrib><description>Stability robustness analysis of a system under parametric perturbations is concerned with characterizing a region in the parameter space in which the system remains stable. In this paper, two methods are presented to estimate the stability robustness region of a linear, time-invariant, discrete-time system under multiparameter additive perturbations. An inherent difficulty, which originates from the nonlinear appearance of the perturbation parameters in the inequalities defining the robustness region, is resolved by transforming the problem to stability of a higher order continuous-time system. This allows for application of the available results on stability robustness of continuous-time systems to discrete-time systems. The results are also applied to stability analysis of discrete-time interconnected systems, where the interconnections are treated as perturbations on decoupled stable subsystems.< ></description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/9.284877</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Computer science; control theory; systems ; Control system analysis ; Control theory. Systems ; Eigenvalues and eigenfunctions ; Equations ; Exact sciences and technology ; Interconnected systems ; Lyapunov method ; Robust stability ; Robustness ; Stability analysis ; Symmetric matrices ; Systems engineering and theory ; Uncertainty</subject><ispartof>IEEE transactions on automatic control, 1994-05, Vol.39 (5), p.991-995</ispartof><rights>1994 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c369t-c271c7d752a5778755465789bab97d5e040ed86c2fd8e7adf35750441e58fb9c3</citedby><cites>FETCH-LOGICAL-c369t-c271c7d752a5778755465789bab97d5e040ed86c2fd8e7adf35750441e58fb9c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/284877$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/284877$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=4157319$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Karan, M.</creatorcontrib><creatorcontrib>Sezer, M.E.</creatorcontrib><creatorcontrib>Ocali, O.</creatorcontrib><title>Robust stability of discrete-time systems under parametric perturbations</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>Stability robustness analysis of a system under parametric perturbations is concerned with characterizing a region in the parameter space in which the system remains stable. In this paper, two methods are presented to estimate the stability robustness region of a linear, time-invariant, discrete-time system under multiparameter additive perturbations. An inherent difficulty, which originates from the nonlinear appearance of the perturbation parameters in the inequalities defining the robustness region, is resolved by transforming the problem to stability of a higher order continuous-time system. This allows for application of the available results on stability robustness of continuous-time systems to discrete-time systems. The results are also applied to stability analysis of discrete-time interconnected systems, where the interconnections are treated as perturbations on decoupled stable subsystems.< ></description><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Control system analysis</subject><subject>Control theory. Systems</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Equations</subject><subject>Exact sciences and technology</subject><subject>Interconnected systems</subject><subject>Lyapunov method</subject><subject>Robust stability</subject><subject>Robustness</subject><subject>Stability analysis</subject><subject>Symmetric matrices</subject><subject>Systems engineering and theory</subject><subject>Uncertainty</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><recordid>eNqFkM1LxDAQxYMouK6CZ089iHjpmqRNkxxF1BUWBNFzSdMJRPplJj3sf2-ky149DcP8ePPeI-Sa0Q1jVD_oDVelkvKErJgQKueCF6dkRSlTueaqOicXiN9prcqSrcj2Y2xmjBlG0_jOx302uqz1aANEyKPvIcM9Rugxm4cWQjaZYHqIwdtsghDn0JjoxwEvyZkzHcLVYa7J18vz59M2372_vj097nJbVDrmlktmZSsFN0JKJYUoKyGVbkyjZSuAlhRaVVnuWgXStK4QUtBkFYRyjbbFmtwtulMYf2bAWPfJLXSdGWCcseY6Rasq-j-o0l9alAm8X0AbRsQArp6C703Y14zWf53Wul46TejtQdOgNZ0LZrAej3zJhCyYTtjNgnkAOF4PGr-7kn5P</recordid><startdate>19940501</startdate><enddate>19940501</enddate><creator>Karan, M.</creator><creator>Sezer, M.E.</creator><creator>Ocali, O.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>H8D</scope></search><sort><creationdate>19940501</creationdate><title>Robust stability of discrete-time systems under parametric perturbations</title><author>Karan, M. ; Sezer, M.E. ; Ocali, O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-c271c7d752a5778755465789bab97d5e040ed86c2fd8e7adf35750441e58fb9c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Control system analysis</topic><topic>Control theory. Systems</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Equations</topic><topic>Exact sciences and technology</topic><topic>Interconnected systems</topic><topic>Lyapunov method</topic><topic>Robust stability</topic><topic>Robustness</topic><topic>Stability analysis</topic><topic>Symmetric matrices</topic><topic>Systems engineering and theory</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karan, M.</creatorcontrib><creatorcontrib>Sezer, M.E.</creatorcontrib><creatorcontrib>Ocali, O.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Aerospace Database</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Karan, M.</au><au>Sezer, M.E.</au><au>Ocali, O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust stability of discrete-time systems under parametric perturbations</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>1994-05-01</date><risdate>1994</risdate><volume>39</volume><issue>5</issue><spage>991</spage><epage>995</epage><pages>991-995</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>Stability robustness analysis of a system under parametric perturbations is concerned with characterizing a region in the parameter space in which the system remains stable. In this paper, two methods are presented to estimate the stability robustness region of a linear, time-invariant, discrete-time system under multiparameter additive perturbations. An inherent difficulty, which originates from the nonlinear appearance of the perturbation parameters in the inequalities defining the robustness region, is resolved by transforming the problem to stability of a higher order continuous-time system. This allows for application of the available results on stability robustness of continuous-time systems to discrete-time systems. The results are also applied to stability analysis of discrete-time interconnected systems, where the interconnections are treated as perturbations on decoupled stable subsystems.< ></abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/9.284877</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9286 |
ispartof | IEEE transactions on automatic control, 1994-05, Vol.39 (5), p.991-995 |
issn | 0018-9286 1558-2523 |
language | eng |
recordid | cdi_pascalfrancis_primary_4157319 |
source | IEEE Electronic Library (IEL) |
subjects | Applied sciences Computer science control theory systems Control system analysis Control theory. Systems Eigenvalues and eigenfunctions Equations Exact sciences and technology Interconnected systems Lyapunov method Robust stability Robustness Stability analysis Symmetric matrices Systems engineering and theory Uncertainty |
title | Robust stability of discrete-time systems under parametric perturbations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T09%3A24%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20stability%20of%20discrete-time%20systems%20under%20parametric%20perturbations&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Karan,%20M.&rft.date=1994-05-01&rft.volume=39&rft.issue=5&rft.spage=991&rft.epage=995&rft.pages=991-995&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/9.284877&rft_dat=%3Cproquest_RIE%3E29016660%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28578034&rft_id=info:pmid/&rft_ieee_id=284877&rfr_iscdi=true |