Model-Based Temperature Noise Monitoring Methods for LMFBR Core Anomaly Detection

Temperature noise, measured by thermocouples mounted at each core fuel subassembly, is considered to be the most useful signal for detecting and locating local cooling anomalies in an LMFBR core. However, the core outlet temperature noise contains background noise due to fluctuations in the operatin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of nuclear science and technology 1994-03, Vol.31 (3), p.189-203
Hauptverfasser: TAMAOKI, Tetsuo, SONODA, Yukio, SATO, Masuo, TAKAHASHI, Ryoichi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 203
container_issue 3
container_start_page 189
container_title Journal of nuclear science and technology
container_volume 31
creator TAMAOKI, Tetsuo
SONODA, Yukio
SATO, Masuo
TAKAHASHI, Ryoichi
description Temperature noise, measured by thermocouples mounted at each core fuel subassembly, is considered to be the most useful signal for detecting and locating local cooling anomalies in an LMFBR core. However, the core outlet temperature noise contains background noise due to fluctuations in the operating parameters including reactor power. It is therefore necessary to reduce this background noise for highly sensitive anomaly detection by subtracting predictable components from the measured signal. In the present study, both a physical model and an autoregressive model were applied to noise data measured in the experimental fast reactor JOYO. The results indicate that the autoregressive model has a higher precision than the physical model in background noise prediction. Based on these results, an "autoregressive model modification method" is proposed, in which a temporary autoregressive model is generated by interpolation or extrapolation of reference models identified under a small number of different operating conditions. The generated autoregressive model has shown sufficient precision over a wide range of reactor power in applications to artificial noise data produced by an LMFBR noise simulator even when the coolant flow rate was changed to keep a constant power-to-flow ratio.
doi_str_mv 10.1080/18811248.1994.9735138
format Article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_4157309</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3180018201</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3718-3f55e3c019570947b30feae836f9d1a9489e3596d49bf266aead06e5e8c3d4073</originalsourceid><addsrcrecordid>eNp9kN9LwzAQx4MoOKd_ghDQ186k-dHkzTmdCquizOeQtRft6JqZdMj-e1u2-ejTcXef7x18ELqkZESJIjdUKUpTrkZUaz7SGROUqSM06OdJvzhGA0LSNGGU0VN0FuOyayWXaoDecl9CndzZCCWew2oNwbabAPjFVxFw7puq9aFqPnEO7ZcvI3Y-4Fk-vXvHE99x48avbL3F99BC0Va-OUcnztYRLvZ1iD6mD_PJUzJ7fXyejGdJwTKqEuaEAFYQqkVGNM8WjDiwoJh0uqRWc6WBCS1LrhculdKCLYkEAapgJScZG6Kr3d118N8biK1Z-k1oupeG8kxqprXuKbGjiuBjDODMOlQrG7aGEtPbMwd7prdn9va63PX-uo2FrV2wTVHFvzCnImNEd9jtDquazsvK_vhQl6a129qHQ4b9_-kXKB-Bow</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1476939997</pqid></control><display><type>article</type><title>Model-Based Temperature Noise Monitoring Methods for LMFBR Core Anomaly Detection</title><source>J-STAGE Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>TAMAOKI, Tetsuo ; SONODA, Yukio ; SATO, Masuo ; TAKAHASHI, Ryoichi</creator><creatorcontrib>TAMAOKI, Tetsuo ; SONODA, Yukio ; SATO, Masuo ; TAKAHASHI, Ryoichi</creatorcontrib><description>Temperature noise, measured by thermocouples mounted at each core fuel subassembly, is considered to be the most useful signal for detecting and locating local cooling anomalies in an LMFBR core. However, the core outlet temperature noise contains background noise due to fluctuations in the operating parameters including reactor power. It is therefore necessary to reduce this background noise for highly sensitive anomaly detection by subtracting predictable components from the measured signal. In the present study, both a physical model and an autoregressive model were applied to noise data measured in the experimental fast reactor JOYO. The results indicate that the autoregressive model has a higher precision than the physical model in background noise prediction. Based on these results, an "autoregressive model modification method" is proposed, in which a temporary autoregressive model is generated by interpolation or extrapolation of reference models identified under a small number of different operating conditions. The generated autoregressive model has shown sufficient precision over a wide range of reactor power in applications to artificial noise data produced by an LMFBR noise simulator even when the coolant flow rate was changed to keep a constant power-to-flow ratio.</description><identifier>ISSN: 0022-3131</identifier><identifier>EISSN: 1881-1248</identifier><identifier>DOI: 10.1080/18811248.1994.9735138</identifier><identifier>CODEN: JNSTAX</identifier><language>eng</language><publisher>Tokyo: Taylor &amp; Francis Group</publisher><subject>accuracy ; anomaly detection ; Applied sciences ; autoregressive model ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; Fission nuclear power plants ; Installations for energy generation and conversion: thermal and electrical energy ; JOYO reactor ; LMFBR type reactors ; local core cooling anomaly ; physical model ; simulators ; temperature noise ; variations</subject><ispartof>Journal of nuclear science and technology, 1994-03, Vol.31 (3), p.189-203</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 1994</rights><rights>1994 INIST-CNRS</rights><rights>Copyright Japan Science and Technology Agency 1994</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3718-3f55e3c019570947b30feae836f9d1a9489e3596d49bf266aead06e5e8c3d4073</citedby><cites>FETCH-LOGICAL-c3718-3f55e3c019570947b30feae836f9d1a9489e3596d49bf266aead06e5e8c3d4073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=4157309$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>TAMAOKI, Tetsuo</creatorcontrib><creatorcontrib>SONODA, Yukio</creatorcontrib><creatorcontrib>SATO, Masuo</creatorcontrib><creatorcontrib>TAKAHASHI, Ryoichi</creatorcontrib><title>Model-Based Temperature Noise Monitoring Methods for LMFBR Core Anomaly Detection</title><title>Journal of nuclear science and technology</title><description>Temperature noise, measured by thermocouples mounted at each core fuel subassembly, is considered to be the most useful signal for detecting and locating local cooling anomalies in an LMFBR core. However, the core outlet temperature noise contains background noise due to fluctuations in the operating parameters including reactor power. It is therefore necessary to reduce this background noise for highly sensitive anomaly detection by subtracting predictable components from the measured signal. In the present study, both a physical model and an autoregressive model were applied to noise data measured in the experimental fast reactor JOYO. The results indicate that the autoregressive model has a higher precision than the physical model in background noise prediction. Based on these results, an "autoregressive model modification method" is proposed, in which a temporary autoregressive model is generated by interpolation or extrapolation of reference models identified under a small number of different operating conditions. The generated autoregressive model has shown sufficient precision over a wide range of reactor power in applications to artificial noise data produced by an LMFBR noise simulator even when the coolant flow rate was changed to keep a constant power-to-flow ratio.</description><subject>accuracy</subject><subject>anomaly detection</subject><subject>Applied sciences</subject><subject>autoregressive model</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Fission nuclear power plants</subject><subject>Installations for energy generation and conversion: thermal and electrical energy</subject><subject>JOYO reactor</subject><subject>LMFBR type reactors</subject><subject>local core cooling anomaly</subject><subject>physical model</subject><subject>simulators</subject><subject>temperature noise</subject><subject>variations</subject><issn>0022-3131</issn><issn>1881-1248</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><recordid>eNp9kN9LwzAQx4MoOKd_ghDQ186k-dHkzTmdCquizOeQtRft6JqZdMj-e1u2-ejTcXef7x18ELqkZESJIjdUKUpTrkZUaz7SGROUqSM06OdJvzhGA0LSNGGU0VN0FuOyayWXaoDecl9CndzZCCWew2oNwbabAPjFVxFw7puq9aFqPnEO7ZcvI3Y-4Fk-vXvHE99x48avbL3F99BC0Va-OUcnztYRLvZ1iD6mD_PJUzJ7fXyejGdJwTKqEuaEAFYQqkVGNM8WjDiwoJh0uqRWc6WBCS1LrhculdKCLYkEAapgJScZG6Kr3d118N8biK1Z-k1oupeG8kxqprXuKbGjiuBjDODMOlQrG7aGEtPbMwd7prdn9va63PX-uo2FrV2wTVHFvzCnImNEd9jtDquazsvK_vhQl6a129qHQ4b9_-kXKB-Bow</recordid><startdate>19940301</startdate><enddate>19940301</enddate><creator>TAMAOKI, Tetsuo</creator><creator>SONODA, Yukio</creator><creator>SATO, Masuo</creator><creator>TAKAHASHI, Ryoichi</creator><general>Taylor &amp; Francis Group</general><general>Atomic Energy Society of Japan</general><general>Taylor &amp; Francis Ltd</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19940301</creationdate><title>Model-Based Temperature Noise Monitoring Methods for LMFBR Core Anomaly Detection</title><author>TAMAOKI, Tetsuo ; SONODA, Yukio ; SATO, Masuo ; TAKAHASHI, Ryoichi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3718-3f55e3c019570947b30feae836f9d1a9489e3596d49bf266aead06e5e8c3d4073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>accuracy</topic><topic>anomaly detection</topic><topic>Applied sciences</topic><topic>autoregressive model</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Fission nuclear power plants</topic><topic>Installations for energy generation and conversion: thermal and electrical energy</topic><topic>JOYO reactor</topic><topic>LMFBR type reactors</topic><topic>local core cooling anomaly</topic><topic>physical model</topic><topic>simulators</topic><topic>temperature noise</topic><topic>variations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>TAMAOKI, Tetsuo</creatorcontrib><creatorcontrib>SONODA, Yukio</creatorcontrib><creatorcontrib>SATO, Masuo</creatorcontrib><creatorcontrib>TAKAHASHI, Ryoichi</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of nuclear science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>TAMAOKI, Tetsuo</au><au>SONODA, Yukio</au><au>SATO, Masuo</au><au>TAKAHASHI, Ryoichi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Model-Based Temperature Noise Monitoring Methods for LMFBR Core Anomaly Detection</atitle><jtitle>Journal of nuclear science and technology</jtitle><date>1994-03-01</date><risdate>1994</risdate><volume>31</volume><issue>3</issue><spage>189</spage><epage>203</epage><pages>189-203</pages><issn>0022-3131</issn><eissn>1881-1248</eissn><coden>JNSTAX</coden><abstract>Temperature noise, measured by thermocouples mounted at each core fuel subassembly, is considered to be the most useful signal for detecting and locating local cooling anomalies in an LMFBR core. However, the core outlet temperature noise contains background noise due to fluctuations in the operating parameters including reactor power. It is therefore necessary to reduce this background noise for highly sensitive anomaly detection by subtracting predictable components from the measured signal. In the present study, both a physical model and an autoregressive model were applied to noise data measured in the experimental fast reactor JOYO. The results indicate that the autoregressive model has a higher precision than the physical model in background noise prediction. Based on these results, an "autoregressive model modification method" is proposed, in which a temporary autoregressive model is generated by interpolation or extrapolation of reference models identified under a small number of different operating conditions. The generated autoregressive model has shown sufficient precision over a wide range of reactor power in applications to artificial noise data produced by an LMFBR noise simulator even when the coolant flow rate was changed to keep a constant power-to-flow ratio.</abstract><cop>Tokyo</cop><pub>Taylor &amp; Francis Group</pub><doi>10.1080/18811248.1994.9735138</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-3131
ispartof Journal of nuclear science and technology, 1994-03, Vol.31 (3), p.189-203
issn 0022-3131
1881-1248
language eng
recordid cdi_pascalfrancis_primary_4157309
source J-STAGE Free; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects accuracy
anomaly detection
Applied sciences
autoregressive model
Energy
Energy. Thermal use of fuels
Exact sciences and technology
Fission nuclear power plants
Installations for energy generation and conversion: thermal and electrical energy
JOYO reactor
LMFBR type reactors
local core cooling anomaly
physical model
simulators
temperature noise
variations
title Model-Based Temperature Noise Monitoring Methods for LMFBR Core Anomaly Detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T17%3A04%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Model-Based%20Temperature%20Noise%20Monitoring%20Methods%20for%20LMFBR%20Core%20Anomaly%20Detection&rft.jtitle=Journal%20of%20nuclear%20science%20and%20technology&rft.au=TAMAOKI,%20Tetsuo&rft.date=1994-03-01&rft.volume=31&rft.issue=3&rft.spage=189&rft.epage=203&rft.pages=189-203&rft.issn=0022-3131&rft.eissn=1881-1248&rft.coden=JNSTAX&rft_id=info:doi/10.1080/18811248.1994.9735138&rft_dat=%3Cproquest_pasca%3E3180018201%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1476939997&rft_id=info:pmid/&rfr_iscdi=true