Model-Based Temperature Noise Monitoring Methods for LMFBR Core Anomaly Detection
Temperature noise, measured by thermocouples mounted at each core fuel subassembly, is considered to be the most useful signal for detecting and locating local cooling anomalies in an LMFBR core. However, the core outlet temperature noise contains background noise due to fluctuations in the operatin...
Gespeichert in:
Veröffentlicht in: | Journal of nuclear science and technology 1994-03, Vol.31 (3), p.189-203 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 203 |
---|---|
container_issue | 3 |
container_start_page | 189 |
container_title | Journal of nuclear science and technology |
container_volume | 31 |
creator | TAMAOKI, Tetsuo SONODA, Yukio SATO, Masuo TAKAHASHI, Ryoichi |
description | Temperature noise, measured by thermocouples mounted at each core fuel subassembly, is considered to be the most useful signal for detecting and locating local cooling anomalies in an LMFBR core. However, the core outlet temperature noise contains background noise due to fluctuations in the operating parameters including reactor power. It is therefore necessary to reduce this background noise for highly sensitive anomaly detection by subtracting predictable components from the measured signal. In the present study, both a physical model and an autoregressive model were applied to noise data measured in the experimental fast reactor JOYO. The results indicate that the autoregressive model has a higher precision than the physical model in background noise prediction. Based on these results, an "autoregressive model modification method" is proposed, in which a temporary autoregressive model is generated by interpolation or extrapolation of reference models identified under a small number of different operating conditions. The generated autoregressive model has shown sufficient precision over a wide range of reactor power in applications to artificial noise data produced by an LMFBR noise simulator even when the coolant flow rate was changed to keep a constant power-to-flow ratio. |
doi_str_mv | 10.1080/18811248.1994.9735138 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_4157309</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3180018201</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3718-3f55e3c019570947b30feae836f9d1a9489e3596d49bf266aead06e5e8c3d4073</originalsourceid><addsrcrecordid>eNp9kN9LwzAQx4MoOKd_ghDQ186k-dHkzTmdCquizOeQtRft6JqZdMj-e1u2-ejTcXef7x18ELqkZESJIjdUKUpTrkZUaz7SGROUqSM06OdJvzhGA0LSNGGU0VN0FuOyayWXaoDecl9CndzZCCWew2oNwbabAPjFVxFw7puq9aFqPnEO7ZcvI3Y-4Fk-vXvHE99x48avbL3F99BC0Va-OUcnztYRLvZ1iD6mD_PJUzJ7fXyejGdJwTKqEuaEAFYQqkVGNM8WjDiwoJh0uqRWc6WBCS1LrhculdKCLYkEAapgJScZG6Kr3d118N8biK1Z-k1oupeG8kxqprXuKbGjiuBjDODMOlQrG7aGEtPbMwd7prdn9va63PX-uo2FrV2wTVHFvzCnImNEd9jtDquazsvK_vhQl6a129qHQ4b9_-kXKB-Bow</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1476939997</pqid></control><display><type>article</type><title>Model-Based Temperature Noise Monitoring Methods for LMFBR Core Anomaly Detection</title><source>J-STAGE Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>TAMAOKI, Tetsuo ; SONODA, Yukio ; SATO, Masuo ; TAKAHASHI, Ryoichi</creator><creatorcontrib>TAMAOKI, Tetsuo ; SONODA, Yukio ; SATO, Masuo ; TAKAHASHI, Ryoichi</creatorcontrib><description>Temperature noise, measured by thermocouples mounted at each core fuel subassembly, is considered to be the most useful signal for detecting and locating local cooling anomalies in an LMFBR core. However, the core outlet temperature noise contains background noise due to fluctuations in the operating parameters including reactor power. It is therefore necessary to reduce this background noise for highly sensitive anomaly detection by subtracting predictable components from the measured signal. In the present study, both a physical model and an autoregressive model were applied to noise data measured in the experimental fast reactor JOYO. The results indicate that the autoregressive model has a higher precision than the physical model in background noise prediction. Based on these results, an "autoregressive model modification method" is proposed, in which a temporary autoregressive model is generated by interpolation or extrapolation of reference models identified under a small number of different operating conditions. The generated autoregressive model has shown sufficient precision over a wide range of reactor power in applications to artificial noise data produced by an LMFBR noise simulator even when the coolant flow rate was changed to keep a constant power-to-flow ratio.</description><identifier>ISSN: 0022-3131</identifier><identifier>EISSN: 1881-1248</identifier><identifier>DOI: 10.1080/18811248.1994.9735138</identifier><identifier>CODEN: JNSTAX</identifier><language>eng</language><publisher>Tokyo: Taylor & Francis Group</publisher><subject>accuracy ; anomaly detection ; Applied sciences ; autoregressive model ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; Fission nuclear power plants ; Installations for energy generation and conversion: thermal and electrical energy ; JOYO reactor ; LMFBR type reactors ; local core cooling anomaly ; physical model ; simulators ; temperature noise ; variations</subject><ispartof>Journal of nuclear science and technology, 1994-03, Vol.31 (3), p.189-203</ispartof><rights>Copyright Taylor & Francis Group, LLC 1994</rights><rights>1994 INIST-CNRS</rights><rights>Copyright Japan Science and Technology Agency 1994</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3718-3f55e3c019570947b30feae836f9d1a9489e3596d49bf266aead06e5e8c3d4073</citedby><cites>FETCH-LOGICAL-c3718-3f55e3c019570947b30feae836f9d1a9489e3596d49bf266aead06e5e8c3d4073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=4157309$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>TAMAOKI, Tetsuo</creatorcontrib><creatorcontrib>SONODA, Yukio</creatorcontrib><creatorcontrib>SATO, Masuo</creatorcontrib><creatorcontrib>TAKAHASHI, Ryoichi</creatorcontrib><title>Model-Based Temperature Noise Monitoring Methods for LMFBR Core Anomaly Detection</title><title>Journal of nuclear science and technology</title><description>Temperature noise, measured by thermocouples mounted at each core fuel subassembly, is considered to be the most useful signal for detecting and locating local cooling anomalies in an LMFBR core. However, the core outlet temperature noise contains background noise due to fluctuations in the operating parameters including reactor power. It is therefore necessary to reduce this background noise for highly sensitive anomaly detection by subtracting predictable components from the measured signal. In the present study, both a physical model and an autoregressive model were applied to noise data measured in the experimental fast reactor JOYO. The results indicate that the autoregressive model has a higher precision than the physical model in background noise prediction. Based on these results, an "autoregressive model modification method" is proposed, in which a temporary autoregressive model is generated by interpolation or extrapolation of reference models identified under a small number of different operating conditions. The generated autoregressive model has shown sufficient precision over a wide range of reactor power in applications to artificial noise data produced by an LMFBR noise simulator even when the coolant flow rate was changed to keep a constant power-to-flow ratio.</description><subject>accuracy</subject><subject>anomaly detection</subject><subject>Applied sciences</subject><subject>autoregressive model</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Fission nuclear power plants</subject><subject>Installations for energy generation and conversion: thermal and electrical energy</subject><subject>JOYO reactor</subject><subject>LMFBR type reactors</subject><subject>local core cooling anomaly</subject><subject>physical model</subject><subject>simulators</subject><subject>temperature noise</subject><subject>variations</subject><issn>0022-3131</issn><issn>1881-1248</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><recordid>eNp9kN9LwzAQx4MoOKd_ghDQ186k-dHkzTmdCquizOeQtRft6JqZdMj-e1u2-ejTcXef7x18ELqkZESJIjdUKUpTrkZUaz7SGROUqSM06OdJvzhGA0LSNGGU0VN0FuOyayWXaoDecl9CndzZCCWew2oNwbabAPjFVxFw7puq9aFqPnEO7ZcvI3Y-4Fk-vXvHE99x48avbL3F99BC0Va-OUcnztYRLvZ1iD6mD_PJUzJ7fXyejGdJwTKqEuaEAFYQqkVGNM8WjDiwoJh0uqRWc6WBCS1LrhculdKCLYkEAapgJScZG6Kr3d118N8biK1Z-k1oupeG8kxqprXuKbGjiuBjDODMOlQrG7aGEtPbMwd7prdn9va63PX-uo2FrV2wTVHFvzCnImNEd9jtDquazsvK_vhQl6a129qHQ4b9_-kXKB-Bow</recordid><startdate>19940301</startdate><enddate>19940301</enddate><creator>TAMAOKI, Tetsuo</creator><creator>SONODA, Yukio</creator><creator>SATO, Masuo</creator><creator>TAKAHASHI, Ryoichi</creator><general>Taylor & Francis Group</general><general>Atomic Energy Society of Japan</general><general>Taylor & Francis Ltd</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19940301</creationdate><title>Model-Based Temperature Noise Monitoring Methods for LMFBR Core Anomaly Detection</title><author>TAMAOKI, Tetsuo ; SONODA, Yukio ; SATO, Masuo ; TAKAHASHI, Ryoichi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3718-3f55e3c019570947b30feae836f9d1a9489e3596d49bf266aead06e5e8c3d4073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>accuracy</topic><topic>anomaly detection</topic><topic>Applied sciences</topic><topic>autoregressive model</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Fission nuclear power plants</topic><topic>Installations for energy generation and conversion: thermal and electrical energy</topic><topic>JOYO reactor</topic><topic>LMFBR type reactors</topic><topic>local core cooling anomaly</topic><topic>physical model</topic><topic>simulators</topic><topic>temperature noise</topic><topic>variations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>TAMAOKI, Tetsuo</creatorcontrib><creatorcontrib>SONODA, Yukio</creatorcontrib><creatorcontrib>SATO, Masuo</creatorcontrib><creatorcontrib>TAKAHASHI, Ryoichi</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of nuclear science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>TAMAOKI, Tetsuo</au><au>SONODA, Yukio</au><au>SATO, Masuo</au><au>TAKAHASHI, Ryoichi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Model-Based Temperature Noise Monitoring Methods for LMFBR Core Anomaly Detection</atitle><jtitle>Journal of nuclear science and technology</jtitle><date>1994-03-01</date><risdate>1994</risdate><volume>31</volume><issue>3</issue><spage>189</spage><epage>203</epage><pages>189-203</pages><issn>0022-3131</issn><eissn>1881-1248</eissn><coden>JNSTAX</coden><abstract>Temperature noise, measured by thermocouples mounted at each core fuel subassembly, is considered to be the most useful signal for detecting and locating local cooling anomalies in an LMFBR core. However, the core outlet temperature noise contains background noise due to fluctuations in the operating parameters including reactor power. It is therefore necessary to reduce this background noise for highly sensitive anomaly detection by subtracting predictable components from the measured signal. In the present study, both a physical model and an autoregressive model were applied to noise data measured in the experimental fast reactor JOYO. The results indicate that the autoregressive model has a higher precision than the physical model in background noise prediction. Based on these results, an "autoregressive model modification method" is proposed, in which a temporary autoregressive model is generated by interpolation or extrapolation of reference models identified under a small number of different operating conditions. The generated autoregressive model has shown sufficient precision over a wide range of reactor power in applications to artificial noise data produced by an LMFBR noise simulator even when the coolant flow rate was changed to keep a constant power-to-flow ratio.</abstract><cop>Tokyo</cop><pub>Taylor & Francis Group</pub><doi>10.1080/18811248.1994.9735138</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3131 |
ispartof | Journal of nuclear science and technology, 1994-03, Vol.31 (3), p.189-203 |
issn | 0022-3131 1881-1248 |
language | eng |
recordid | cdi_pascalfrancis_primary_4157309 |
source | J-STAGE Free; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | accuracy anomaly detection Applied sciences autoregressive model Energy Energy. Thermal use of fuels Exact sciences and technology Fission nuclear power plants Installations for energy generation and conversion: thermal and electrical energy JOYO reactor LMFBR type reactors local core cooling anomaly physical model simulators temperature noise variations |
title | Model-Based Temperature Noise Monitoring Methods for LMFBR Core Anomaly Detection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T17%3A04%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Model-Based%20Temperature%20Noise%20Monitoring%20Methods%20for%20LMFBR%20Core%20Anomaly%20Detection&rft.jtitle=Journal%20of%20nuclear%20science%20and%20technology&rft.au=TAMAOKI,%20Tetsuo&rft.date=1994-03-01&rft.volume=31&rft.issue=3&rft.spage=189&rft.epage=203&rft.pages=189-203&rft.issn=0022-3131&rft.eissn=1881-1248&rft.coden=JNSTAX&rft_id=info:doi/10.1080/18811248.1994.9735138&rft_dat=%3Cproquest_pasca%3E3180018201%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1476939997&rft_id=info:pmid/&rfr_iscdi=true |