Direct Reduction and Differential Constraints

Direct reductions of partial differential equations to systems of ordinary differential equations are in one-to-one correspondence with compatible differential constraints. The differential constraint method is applied to prove that a parabolic evolution equation admits infinitely many characteristi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Royal Society. A, Mathematical and physical sciences Mathematical and physical sciences, 1994-03, Vol.444 (1922), p.509-523
1. Verfasser: Olver, Peter J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 523
container_issue 1922
container_start_page 509
container_title Proceedings of the Royal Society. A, Mathematical and physical sciences
container_volume 444
creator Olver, Peter J.
description Direct reductions of partial differential equations to systems of ordinary differential equations are in one-to-one correspondence with compatible differential constraints. The differential constraint method is applied to prove that a parabolic evolution equation admits infinitely many characteristic second order reductions, but admits a non-characteristic second order reduction if and only if it is linearizable.
doi_str_mv 10.1098/rspa.1994.0035
format Article
fullrecord <record><control><sourceid>jstor_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_4105271</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>52537</jstor_id><sourcerecordid>52537</sourcerecordid><originalsourceid>FETCH-LOGICAL-c639t-9f5d9360d65ff322eb729cf19bbe4f62e4b688bac5479f7394195ce3c41590353</originalsourceid><addsrcrecordid>eNp9ks1P3DAQxaMKpPLRK4ee9sA1iz_j-FShhZYKEAhatLeR49jF25BEtrdl-9fjbNBKK1RO9mjeb-Y92Vl2hNEUI1me-NCrKZaSTRGi_EO2h5nAOZGs2El3WrCcI4I_ZvshLBBCkpdiL8vPnDc6Tu5MvdTRde1EtfXkzFlrvGmjU81k1rUheuXaGA6zXauaYD69ngfZz6_nP2YX-dXNt--z06tcF1TGXFpeS1qguuDWUkJMJYjUFsuqMswWxLCqKMtKac6EtIJKhiXXhmqGuUze6UE2Hedq34XgjYXeuyflV4ARDGFhCAtDWEAjcDwCvQpaNdarVruwoRhGnAicZHSU-W6V_HfambiCRbf0bSr_Pzy8R93d354mMfrDGHNYEgKopBgJllj45_r1uEEASQAuhKWBtWx7zdutn8etixA7v4nCCaciNfOx6UI0z5um8r-hEFRweCgZzPHF9e38_hLmSY9H_aP79fg3PTlsZUlF74NaG1xb40gm5su7zGBXd21M32QLBLtsGuhrS18AiPLK5g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Direct Reduction and Differential Constraints</title><source>JSTOR</source><creator>Olver, Peter J.</creator><creatorcontrib>Olver, Peter J.</creatorcontrib><description>Direct reductions of partial differential equations to systems of ordinary differential equations are in one-to-one correspondence with compatible differential constraints. The differential constraint method is applied to prove that a parabolic evolution equation admits infinitely many characteristic second order reductions, but admits a non-characteristic second order reduction if and only if it is linearizable.</description><identifier>ISSN: 1364-5021</identifier><identifier>ISSN: 0962-8444</identifier><identifier>EISSN: 1471-2946</identifier><identifier>EISSN: 2053-9177</identifier><identifier>DOI: 10.1098/rspa.1994.0035</identifier><language>eng</language><publisher>London: The Royal Society</publisher><subject>Coefficients ; Coordinate systems ; Differential equations ; Differentials ; Evolution equations ; Exact sciences and technology ; Function theory, analysis ; Mathematical methods in physics ; Numerical approximation and analysis ; Ordinary and partial differential equations, boundary value problems ; Ordinary differential equations ; Partial differential equations ; Physics ; Similarity theorem ; Vector fields</subject><ispartof>Proceedings of the Royal Society. A, Mathematical and physical sciences, 1994-03, Vol.444 (1922), p.509-523</ispartof><rights>Copyright 1994 The Royal Society</rights><rights>Scanned images copyright © 2017, Royal Society</rights><rights>1994 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c639t-9f5d9360d65ff322eb729cf19bbe4f62e4b688bac5479f7394195ce3c41590353</citedby><cites>FETCH-LOGICAL-c639t-9f5d9360d65ff322eb729cf19bbe4f62e4b688bac5479f7394195ce3c41590353</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/52537$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/52537$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,27901,27902,57992,57996,58225,58229</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=4105271$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Olver, Peter J.</creatorcontrib><title>Direct Reduction and Differential Constraints</title><title>Proceedings of the Royal Society. A, Mathematical and physical sciences</title><addtitle>Proc. R. Soc. Lond. A</addtitle><addtitle>Proc. R. Soc. Lond. A</addtitle><description>Direct reductions of partial differential equations to systems of ordinary differential equations are in one-to-one correspondence with compatible differential constraints. The differential constraint method is applied to prove that a parabolic evolution equation admits infinitely many characteristic second order reductions, but admits a non-characteristic second order reduction if and only if it is linearizable.</description><subject>Coefficients</subject><subject>Coordinate systems</subject><subject>Differential equations</subject><subject>Differentials</subject><subject>Evolution equations</subject><subject>Exact sciences and technology</subject><subject>Function theory, analysis</subject><subject>Mathematical methods in physics</subject><subject>Numerical approximation and analysis</subject><subject>Ordinary and partial differential equations, boundary value problems</subject><subject>Ordinary differential equations</subject><subject>Partial differential equations</subject><subject>Physics</subject><subject>Similarity theorem</subject><subject>Vector fields</subject><issn>1364-5021</issn><issn>0962-8444</issn><issn>1471-2946</issn><issn>2053-9177</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><recordid>eNp9ks1P3DAQxaMKpPLRK4ee9sA1iz_j-FShhZYKEAhatLeR49jF25BEtrdl-9fjbNBKK1RO9mjeb-Y92Vl2hNEUI1me-NCrKZaSTRGi_EO2h5nAOZGs2El3WrCcI4I_ZvshLBBCkpdiL8vPnDc6Tu5MvdTRde1EtfXkzFlrvGmjU81k1rUheuXaGA6zXauaYD69ngfZz6_nP2YX-dXNt--z06tcF1TGXFpeS1qguuDWUkJMJYjUFsuqMswWxLCqKMtKac6EtIJKhiXXhmqGuUze6UE2Hedq34XgjYXeuyflV4ARDGFhCAtDWEAjcDwCvQpaNdarVruwoRhGnAicZHSU-W6V_HfambiCRbf0bSr_Pzy8R93d354mMfrDGHNYEgKopBgJllj45_r1uEEASQAuhKWBtWx7zdutn8etixA7v4nCCaciNfOx6UI0z5um8r-hEFRweCgZzPHF9e38_hLmSY9H_aP79fg3PTlsZUlF74NaG1xb40gm5su7zGBXd21M32QLBLtsGuhrS18AiPLK5g</recordid><startdate>19940308</startdate><enddate>19940308</enddate><creator>Olver, Peter J.</creator><general>The Royal Society</general><general>Royal Society of London</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19940308</creationdate><title>Direct Reduction and Differential Constraints</title><author>Olver, Peter J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c639t-9f5d9360d65ff322eb729cf19bbe4f62e4b688bac5479f7394195ce3c41590353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Coefficients</topic><topic>Coordinate systems</topic><topic>Differential equations</topic><topic>Differentials</topic><topic>Evolution equations</topic><topic>Exact sciences and technology</topic><topic>Function theory, analysis</topic><topic>Mathematical methods in physics</topic><topic>Numerical approximation and analysis</topic><topic>Ordinary and partial differential equations, boundary value problems</topic><topic>Ordinary differential equations</topic><topic>Partial differential equations</topic><topic>Physics</topic><topic>Similarity theorem</topic><topic>Vector fields</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Olver, Peter J.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Proceedings of the Royal Society. A, Mathematical and physical sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Olver, Peter J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Direct Reduction and Differential Constraints</atitle><jtitle>Proceedings of the Royal Society. A, Mathematical and physical sciences</jtitle><stitle>Proc. R. Soc. Lond. A</stitle><addtitle>Proc. R. Soc. Lond. A</addtitle><date>1994-03-08</date><risdate>1994</risdate><volume>444</volume><issue>1922</issue><spage>509</spage><epage>523</epage><pages>509-523</pages><issn>1364-5021</issn><issn>0962-8444</issn><eissn>1471-2946</eissn><eissn>2053-9177</eissn><abstract>Direct reductions of partial differential equations to systems of ordinary differential equations are in one-to-one correspondence with compatible differential constraints. The differential constraint method is applied to prove that a parabolic evolution equation admits infinitely many characteristic second order reductions, but admits a non-characteristic second order reduction if and only if it is linearizable.</abstract><cop>London</cop><pub>The Royal Society</pub><doi>10.1098/rspa.1994.0035</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1364-5021
ispartof Proceedings of the Royal Society. A, Mathematical and physical sciences, 1994-03, Vol.444 (1922), p.509-523
issn 1364-5021
0962-8444
1471-2946
2053-9177
language eng
recordid cdi_pascalfrancis_primary_4105271
source JSTOR
subjects Coefficients
Coordinate systems
Differential equations
Differentials
Evolution equations
Exact sciences and technology
Function theory, analysis
Mathematical methods in physics
Numerical approximation and analysis
Ordinary and partial differential equations, boundary value problems
Ordinary differential equations
Partial differential equations
Physics
Similarity theorem
Vector fields
title Direct Reduction and Differential Constraints
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T14%3A11%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Direct%20Reduction%20and%20Differential%20Constraints&rft.jtitle=Proceedings%20of%20the%20Royal%20Society.%20A,%20Mathematical%20and%20physical%20sciences&rft.au=Olver,%20Peter%20J.&rft.date=1994-03-08&rft.volume=444&rft.issue=1922&rft.spage=509&rft.epage=523&rft.pages=509-523&rft.issn=1364-5021&rft.eissn=1471-2946&rft_id=info:doi/10.1098/rspa.1994.0035&rft_dat=%3Cjstor_pasca%3E52537%3C/jstor_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=52537&rfr_iscdi=true