Direct Reduction and Differential Constraints
Direct reductions of partial differential equations to systems of ordinary differential equations are in one-to-one correspondence with compatible differential constraints. The differential constraint method is applied to prove that a parabolic evolution equation admits infinitely many characteristi...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Royal Society. A, Mathematical and physical sciences Mathematical and physical sciences, 1994-03, Vol.444 (1922), p.509-523 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 523 |
---|---|
container_issue | 1922 |
container_start_page | 509 |
container_title | Proceedings of the Royal Society. A, Mathematical and physical sciences |
container_volume | 444 |
creator | Olver, Peter J. |
description | Direct reductions of partial differential equations to systems of ordinary differential equations are in one-to-one correspondence with compatible differential constraints. The differential constraint method is applied to prove that a parabolic evolution equation admits infinitely many characteristic second order reductions, but admits a non-characteristic second order reduction if and only if it is linearizable. |
doi_str_mv | 10.1098/rspa.1994.0035 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_4105271</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>52537</jstor_id><sourcerecordid>52537</sourcerecordid><originalsourceid>FETCH-LOGICAL-c639t-9f5d9360d65ff322eb729cf19bbe4f62e4b688bac5479f7394195ce3c41590353</originalsourceid><addsrcrecordid>eNp9ks1P3DAQxaMKpPLRK4ee9sA1iz_j-FShhZYKEAhatLeR49jF25BEtrdl-9fjbNBKK1RO9mjeb-Y92Vl2hNEUI1me-NCrKZaSTRGi_EO2h5nAOZGs2El3WrCcI4I_ZvshLBBCkpdiL8vPnDc6Tu5MvdTRde1EtfXkzFlrvGmjU81k1rUheuXaGA6zXauaYD69ngfZz6_nP2YX-dXNt--z06tcF1TGXFpeS1qguuDWUkJMJYjUFsuqMswWxLCqKMtKac6EtIJKhiXXhmqGuUze6UE2Hedq34XgjYXeuyflV4ARDGFhCAtDWEAjcDwCvQpaNdarVruwoRhGnAicZHSU-W6V_HfambiCRbf0bSr_Pzy8R93d354mMfrDGHNYEgKopBgJllj45_r1uEEASQAuhKWBtWx7zdutn8etixA7v4nCCaciNfOx6UI0z5um8r-hEFRweCgZzPHF9e38_hLmSY9H_aP79fg3PTlsZUlF74NaG1xb40gm5su7zGBXd21M32QLBLtsGuhrS18AiPLK5g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Direct Reduction and Differential Constraints</title><source>JSTOR</source><creator>Olver, Peter J.</creator><creatorcontrib>Olver, Peter J.</creatorcontrib><description>Direct reductions of partial differential equations to systems of ordinary differential equations are in one-to-one correspondence with compatible differential constraints. The differential constraint method is applied to prove that a parabolic evolution equation admits infinitely many characteristic second order reductions, but admits a non-characteristic second order reduction if and only if it is linearizable.</description><identifier>ISSN: 1364-5021</identifier><identifier>ISSN: 0962-8444</identifier><identifier>EISSN: 1471-2946</identifier><identifier>EISSN: 2053-9177</identifier><identifier>DOI: 10.1098/rspa.1994.0035</identifier><language>eng</language><publisher>London: The Royal Society</publisher><subject>Coefficients ; Coordinate systems ; Differential equations ; Differentials ; Evolution equations ; Exact sciences and technology ; Function theory, analysis ; Mathematical methods in physics ; Numerical approximation and analysis ; Ordinary and partial differential equations, boundary value problems ; Ordinary differential equations ; Partial differential equations ; Physics ; Similarity theorem ; Vector fields</subject><ispartof>Proceedings of the Royal Society. A, Mathematical and physical sciences, 1994-03, Vol.444 (1922), p.509-523</ispartof><rights>Copyright 1994 The Royal Society</rights><rights>Scanned images copyright © 2017, Royal Society</rights><rights>1994 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c639t-9f5d9360d65ff322eb729cf19bbe4f62e4b688bac5479f7394195ce3c41590353</citedby><cites>FETCH-LOGICAL-c639t-9f5d9360d65ff322eb729cf19bbe4f62e4b688bac5479f7394195ce3c41590353</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/52537$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/52537$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,27901,27902,57992,57996,58225,58229</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=4105271$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Olver, Peter J.</creatorcontrib><title>Direct Reduction and Differential Constraints</title><title>Proceedings of the Royal Society. A, Mathematical and physical sciences</title><addtitle>Proc. R. Soc. Lond. A</addtitle><addtitle>Proc. R. Soc. Lond. A</addtitle><description>Direct reductions of partial differential equations to systems of ordinary differential equations are in one-to-one correspondence with compatible differential constraints. The differential constraint method is applied to prove that a parabolic evolution equation admits infinitely many characteristic second order reductions, but admits a non-characteristic second order reduction if and only if it is linearizable.</description><subject>Coefficients</subject><subject>Coordinate systems</subject><subject>Differential equations</subject><subject>Differentials</subject><subject>Evolution equations</subject><subject>Exact sciences and technology</subject><subject>Function theory, analysis</subject><subject>Mathematical methods in physics</subject><subject>Numerical approximation and analysis</subject><subject>Ordinary and partial differential equations, boundary value problems</subject><subject>Ordinary differential equations</subject><subject>Partial differential equations</subject><subject>Physics</subject><subject>Similarity theorem</subject><subject>Vector fields</subject><issn>1364-5021</issn><issn>0962-8444</issn><issn>1471-2946</issn><issn>2053-9177</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><recordid>eNp9ks1P3DAQxaMKpPLRK4ee9sA1iz_j-FShhZYKEAhatLeR49jF25BEtrdl-9fjbNBKK1RO9mjeb-Y92Vl2hNEUI1me-NCrKZaSTRGi_EO2h5nAOZGs2El3WrCcI4I_ZvshLBBCkpdiL8vPnDc6Tu5MvdTRde1EtfXkzFlrvGmjU81k1rUheuXaGA6zXauaYD69ngfZz6_nP2YX-dXNt--z06tcF1TGXFpeS1qguuDWUkJMJYjUFsuqMswWxLCqKMtKac6EtIJKhiXXhmqGuUze6UE2Hedq34XgjYXeuyflV4ARDGFhCAtDWEAjcDwCvQpaNdarVruwoRhGnAicZHSU-W6V_HfambiCRbf0bSr_Pzy8R93d354mMfrDGHNYEgKopBgJllj45_r1uEEASQAuhKWBtWx7zdutn8etixA7v4nCCaciNfOx6UI0z5um8r-hEFRweCgZzPHF9e38_hLmSY9H_aP79fg3PTlsZUlF74NaG1xb40gm5su7zGBXd21M32QLBLtsGuhrS18AiPLK5g</recordid><startdate>19940308</startdate><enddate>19940308</enddate><creator>Olver, Peter J.</creator><general>The Royal Society</general><general>Royal Society of London</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19940308</creationdate><title>Direct Reduction and Differential Constraints</title><author>Olver, Peter J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c639t-9f5d9360d65ff322eb729cf19bbe4f62e4b688bac5479f7394195ce3c41590353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Coefficients</topic><topic>Coordinate systems</topic><topic>Differential equations</topic><topic>Differentials</topic><topic>Evolution equations</topic><topic>Exact sciences and technology</topic><topic>Function theory, analysis</topic><topic>Mathematical methods in physics</topic><topic>Numerical approximation and analysis</topic><topic>Ordinary and partial differential equations, boundary value problems</topic><topic>Ordinary differential equations</topic><topic>Partial differential equations</topic><topic>Physics</topic><topic>Similarity theorem</topic><topic>Vector fields</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Olver, Peter J.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Proceedings of the Royal Society. A, Mathematical and physical sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Olver, Peter J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Direct Reduction and Differential Constraints</atitle><jtitle>Proceedings of the Royal Society. A, Mathematical and physical sciences</jtitle><stitle>Proc. R. Soc. Lond. A</stitle><addtitle>Proc. R. Soc. Lond. A</addtitle><date>1994-03-08</date><risdate>1994</risdate><volume>444</volume><issue>1922</issue><spage>509</spage><epage>523</epage><pages>509-523</pages><issn>1364-5021</issn><issn>0962-8444</issn><eissn>1471-2946</eissn><eissn>2053-9177</eissn><abstract>Direct reductions of partial differential equations to systems of ordinary differential equations are in one-to-one correspondence with compatible differential constraints. The differential constraint method is applied to prove that a parabolic evolution equation admits infinitely many characteristic second order reductions, but admits a non-characteristic second order reduction if and only if it is linearizable.</abstract><cop>London</cop><pub>The Royal Society</pub><doi>10.1098/rspa.1994.0035</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1364-5021 |
ispartof | Proceedings of the Royal Society. A, Mathematical and physical sciences, 1994-03, Vol.444 (1922), p.509-523 |
issn | 1364-5021 0962-8444 1471-2946 2053-9177 |
language | eng |
recordid | cdi_pascalfrancis_primary_4105271 |
source | JSTOR |
subjects | Coefficients Coordinate systems Differential equations Differentials Evolution equations Exact sciences and technology Function theory, analysis Mathematical methods in physics Numerical approximation and analysis Ordinary and partial differential equations, boundary value problems Ordinary differential equations Partial differential equations Physics Similarity theorem Vector fields |
title | Direct Reduction and Differential Constraints |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T14%3A11%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Direct%20Reduction%20and%20Differential%20Constraints&rft.jtitle=Proceedings%20of%20the%20Royal%20Society.%20A,%20Mathematical%20and%20physical%20sciences&rft.au=Olver,%20Peter%20J.&rft.date=1994-03-08&rft.volume=444&rft.issue=1922&rft.spage=509&rft.epage=523&rft.pages=509-523&rft.issn=1364-5021&rft.eissn=1471-2946&rft_id=info:doi/10.1098/rspa.1994.0035&rft_dat=%3Cjstor_pasca%3E52537%3C/jstor_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=52537&rfr_iscdi=true |