Longitudinal models for polytomous responses

Recent work by Miller and Landis (1991) discusses generalized variance component models for polytomous responses. This work is adapted to longitudinal models for repeated measures of individuals having polytomous responses. In this setting, individuals are considered to be "clusters". The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in statistics. Theory and methods 1993-01, Vol.22 (12), p.3523-3536
1. Verfasser: Von Tress, Mark
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3536
container_issue 12
container_start_page 3523
container_title Communications in statistics. Theory and methods
container_volume 22
creator Von Tress, Mark
description Recent work by Miller and Landis (1991) discusses generalized variance component models for polytomous responses. This work is adapted to longitudinal models for repeated measures of individuals having polytomous responses. In this setting, individuals are considered to be "clusters". The resulting simplifications are discussed. First, each response has a multinomial distribution with N=l. Second, observed cluster proportions in the variance component estimates must be replaced by their expectations. This technique accommodates patients with missing data in a sequence of repeated observations.
doi_str_mv 10.1080/03610929308831230
format Article
fullrecord <record><control><sourceid>pascalfrancis_infor</sourceid><recordid>TN_cdi_pascalfrancis_primary_4103638</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4103638</sourcerecordid><originalsourceid>FETCH-LOGICAL-c279t-1cc4595998553e3ed1ad5ee69274ed0ac0673dcf05184b8464579163f85824ba3</originalsourceid><addsrcrecordid>eNp1j01LxDAQQIMouK7-AG89eLQ600naBLzI4hcUvCh4K9kklUralKSL7L-3y6oX8TSHeW-Gx9g5whWChGugEkEVikBKwoLggC1QUJFzFG-HbLHb5zNQHrOTlD4AUFSSFuyyDsN7N21sN2if9cE6n7I2xGwMfjuFPmxSFl0aw5BcOmVHrfbJnX3PJXu9v3tZPeb188PT6rbOTVGpKUdjuFBCKSkEOXIWtRXOlaqouLOgDZQVWdOCQMnXkpdcVApLaqWQBV9rWjLc3zUxpBRd24yx63XcNgjNLrf5kzs7F3tn1Mlo30Y9mC79ihxnheSM3eyxbpgre_0ZorfNpLc-xB-H_v_yBXrdZk0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Longitudinal models for polytomous responses</title><source>Taylor &amp; Francis Journals Complete</source><creator>Von Tress, Mark</creator><creatorcontrib>Von Tress, Mark</creatorcontrib><description>Recent work by Miller and Landis (1991) discusses generalized variance component models for polytomous responses. This work is adapted to longitudinal models for repeated measures of individuals having polytomous responses. In this setting, individuals are considered to be "clusters". The resulting simplifications are discussed. First, each response has a multinomial distribution with N=l. Second, observed cluster proportions in the variance component estimates must be replaced by their expectations. This technique accommodates patients with missing data in a sequence of repeated observations.</description><identifier>ISSN: 0361-0926</identifier><identifier>EISSN: 1532-415X</identifier><identifier>DOI: 10.1080/03610929308831230</identifier><identifier>CODEN: CSTMDC</identifier><language>eng</language><publisher>Philadelphia, PA: Marcel Dekker, Inc</publisher><subject>Exact sciences and technology ; Gee ; Mathematics ; Multivariate analysis ; Probability and statistics ; repeated measures ; Sciences and techniques of general use ; Statistics</subject><ispartof>Communications in statistics. Theory and methods, 1993-01, Vol.22 (12), p.3523-3536</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 1993</rights><rights>1994 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c279t-1cc4595998553e3ed1ad5ee69274ed0ac0673dcf05184b8464579163f85824ba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/03610929308831230$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/03610929308831230$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,4036,4037,23909,23910,25118,27901,27902,59620,60409</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=4103638$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Von Tress, Mark</creatorcontrib><title>Longitudinal models for polytomous responses</title><title>Communications in statistics. Theory and methods</title><description>Recent work by Miller and Landis (1991) discusses generalized variance component models for polytomous responses. This work is adapted to longitudinal models for repeated measures of individuals having polytomous responses. In this setting, individuals are considered to be "clusters". The resulting simplifications are discussed. First, each response has a multinomial distribution with N=l. Second, observed cluster proportions in the variance component estimates must be replaced by their expectations. This technique accommodates patients with missing data in a sequence of repeated observations.</description><subject>Exact sciences and technology</subject><subject>Gee</subject><subject>Mathematics</subject><subject>Multivariate analysis</subject><subject>Probability and statistics</subject><subject>repeated measures</subject><subject>Sciences and techniques of general use</subject><subject>Statistics</subject><issn>0361-0926</issn><issn>1532-415X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><recordid>eNp1j01LxDAQQIMouK7-AG89eLQ600naBLzI4hcUvCh4K9kklUralKSL7L-3y6oX8TSHeW-Gx9g5whWChGugEkEVikBKwoLggC1QUJFzFG-HbLHb5zNQHrOTlD4AUFSSFuyyDsN7N21sN2if9cE6n7I2xGwMfjuFPmxSFl0aw5BcOmVHrfbJnX3PJXu9v3tZPeb188PT6rbOTVGpKUdjuFBCKSkEOXIWtRXOlaqouLOgDZQVWdOCQMnXkpdcVApLaqWQBV9rWjLc3zUxpBRd24yx63XcNgjNLrf5kzs7F3tn1Mlo30Y9mC79ihxnheSM3eyxbpgre_0ZorfNpLc-xB-H_v_yBXrdZk0</recordid><startdate>19930101</startdate><enddate>19930101</enddate><creator>Von Tress, Mark</creator><general>Marcel Dekker, Inc</general><general>Taylor &amp; Francis</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19930101</creationdate><title>Longitudinal models for polytomous responses</title><author>Von Tress, Mark</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c279t-1cc4595998553e3ed1ad5ee69274ed0ac0673dcf05184b8464579163f85824ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>Exact sciences and technology</topic><topic>Gee</topic><topic>Mathematics</topic><topic>Multivariate analysis</topic><topic>Probability and statistics</topic><topic>repeated measures</topic><topic>Sciences and techniques of general use</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Von Tress, Mark</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Communications in statistics. Theory and methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Von Tress, Mark</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Longitudinal models for polytomous responses</atitle><jtitle>Communications in statistics. Theory and methods</jtitle><date>1993-01-01</date><risdate>1993</risdate><volume>22</volume><issue>12</issue><spage>3523</spage><epage>3536</epage><pages>3523-3536</pages><issn>0361-0926</issn><eissn>1532-415X</eissn><coden>CSTMDC</coden><abstract>Recent work by Miller and Landis (1991) discusses generalized variance component models for polytomous responses. This work is adapted to longitudinal models for repeated measures of individuals having polytomous responses. In this setting, individuals are considered to be "clusters". The resulting simplifications are discussed. First, each response has a multinomial distribution with N=l. Second, observed cluster proportions in the variance component estimates must be replaced by their expectations. This technique accommodates patients with missing data in a sequence of repeated observations.</abstract><cop>Philadelphia, PA</cop><pub>Marcel Dekker, Inc</pub><doi>10.1080/03610929308831230</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0361-0926
ispartof Communications in statistics. Theory and methods, 1993-01, Vol.22 (12), p.3523-3536
issn 0361-0926
1532-415X
language eng
recordid cdi_pascalfrancis_primary_4103638
source Taylor & Francis Journals Complete
subjects Exact sciences and technology
Gee
Mathematics
Multivariate analysis
Probability and statistics
repeated measures
Sciences and techniques of general use
Statistics
title Longitudinal models for polytomous responses
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T11%3A58%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Longitudinal%20models%20for%20polytomous%20responses&rft.jtitle=Communications%20in%20statistics.%20Theory%20and%20methods&rft.au=Von%20Tress,%20Mark&rft.date=1993-01-01&rft.volume=22&rft.issue=12&rft.spage=3523&rft.epage=3536&rft.pages=3523-3536&rft.issn=0361-0926&rft.eissn=1532-415X&rft.coden=CSTMDC&rft_id=info:doi/10.1080/03610929308831230&rft_dat=%3Cpascalfrancis_infor%3E4103638%3C/pascalfrancis_infor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true