Argument conditions for Hurwitz and Schur polynomials from network theory
The monotonicity conditions, recently given, for the arguments of Hurwitz polynomials, as well as some of their associated polynomials, are, very simply, derived using well-established results in network theory. Corresponding results for Schur polynomials may also be obtained.< >
Gespeichert in:
Veröffentlicht in: | IEEE transactions on automatic control 1994-02, Vol.39 (2), p.345-346 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 346 |
---|---|
container_issue | 2 |
container_start_page | 345 |
container_title | IEEE transactions on automatic control |
container_volume | 39 |
creator | Bose, N.K. |
description | The monotonicity conditions, recently given, for the arguments of Hurwitz polynomials, as well as some of their associated polynomials, are, very simply, derived using well-established results in network theory. Corresponding results for Schur polynomials may also be obtained.< > |
doi_str_mv | 10.1109/9.272330 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_4058521</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>272330</ieee_id><sourcerecordid>28572693</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-a3141abac1b3dcb999df8ff5e50afe74b4ed2192b4a70f27693b8989f9dc2cd23</originalsourceid><addsrcrecordid>eNqF0M1LwzAYBvAgCs4pePaUg4iXznyuyXEMdYOBB_Vc0jRx0TaZScuof72Vjl09vbw8P57DA8A1RjOMkXyQM5ITStEJmGDORUY4oadgghAWmSRifg4uUvoc3jljeALWi_jRNca3UAdfudYFn6ANEa66uHftD1S-gq9620W4C3XvQ-NUPYgYGuhNuw_xC7ZbE2J_Cc7sEJmrw52C96fHt-Uq27w8r5eLTaYp5W2mKGZYlUrjkla6lFJWVljLDUfKmpyVzFQES1IylSNL8rmkpZBCWllpoitCp-Bu7N3F8N2Z1BaNS9rUtfImdKkgEhEkWP4_FDwnQ_0A70eoY0gpGlvsomtU7AuMir9RC1mMow709tCpkla1jcprl46eIS44wQO7GZkzxhzTQ8cv3kZ_Rw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28572693</pqid></control><display><type>article</type><title>Argument conditions for Hurwitz and Schur polynomials from network theory</title><source>IEEE Electronic Library (IEL)</source><creator>Bose, N.K.</creator><creatorcontrib>Bose, N.K.</creatorcontrib><description>The monotonicity conditions, recently given, for the arguments of Hurwitz polynomials, as well as some of their associated polynomials, are, very simply, derived using well-established results in network theory. Corresponding results for Schur polynomials may also be obtained.< ></description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/9.272330</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Automatic control ; Computer science; control theory; systems ; Control systems ; Control theory. Systems ; Design optimization ; Error correction ; Exact sciences and technology ; High definition video ; Instruction sets ; Polynomials ; Process control ; System theory ; Three-term control ; Transfer functions</subject><ispartof>IEEE transactions on automatic control, 1994-02, Vol.39 (2), p.345-346</ispartof><rights>1994 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c335t-a3141abac1b3dcb999df8ff5e50afe74b4ed2192b4a70f27693b8989f9dc2cd23</citedby><cites>FETCH-LOGICAL-c335t-a3141abac1b3dcb999df8ff5e50afe74b4ed2192b4a70f27693b8989f9dc2cd23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/272330$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/272330$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=4058521$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Bose, N.K.</creatorcontrib><title>Argument conditions for Hurwitz and Schur polynomials from network theory</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>The monotonicity conditions, recently given, for the arguments of Hurwitz polynomials, as well as some of their associated polynomials, are, very simply, derived using well-established results in network theory. Corresponding results for Schur polynomials may also be obtained.< ></description><subject>Applied sciences</subject><subject>Automatic control</subject><subject>Computer science; control theory; systems</subject><subject>Control systems</subject><subject>Control theory. Systems</subject><subject>Design optimization</subject><subject>Error correction</subject><subject>Exact sciences and technology</subject><subject>High definition video</subject><subject>Instruction sets</subject><subject>Polynomials</subject><subject>Process control</subject><subject>System theory</subject><subject>Three-term control</subject><subject>Transfer functions</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><recordid>eNqF0M1LwzAYBvAgCs4pePaUg4iXznyuyXEMdYOBB_Vc0jRx0TaZScuof72Vjl09vbw8P57DA8A1RjOMkXyQM5ITStEJmGDORUY4oadgghAWmSRifg4uUvoc3jljeALWi_jRNca3UAdfudYFn6ANEa66uHftD1S-gq9620W4C3XvQ-NUPYgYGuhNuw_xC7ZbE2J_Cc7sEJmrw52C96fHt-Uq27w8r5eLTaYp5W2mKGZYlUrjkla6lFJWVljLDUfKmpyVzFQES1IylSNL8rmkpZBCWllpoitCp-Bu7N3F8N2Z1BaNS9rUtfImdKkgEhEkWP4_FDwnQ_0A70eoY0gpGlvsomtU7AuMir9RC1mMow709tCpkla1jcprl46eIS44wQO7GZkzxhzTQ8cv3kZ_Rw</recordid><startdate>19940201</startdate><enddate>19940201</enddate><creator>Bose, N.K.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>H8D</scope></search><sort><creationdate>19940201</creationdate><title>Argument conditions for Hurwitz and Schur polynomials from network theory</title><author>Bose, N.K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-a3141abac1b3dcb999df8ff5e50afe74b4ed2192b4a70f27693b8989f9dc2cd23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Applied sciences</topic><topic>Automatic control</topic><topic>Computer science; control theory; systems</topic><topic>Control systems</topic><topic>Control theory. Systems</topic><topic>Design optimization</topic><topic>Error correction</topic><topic>Exact sciences and technology</topic><topic>High definition video</topic><topic>Instruction sets</topic><topic>Polynomials</topic><topic>Process control</topic><topic>System theory</topic><topic>Three-term control</topic><topic>Transfer functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bose, N.K.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Aerospace Database</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bose, N.K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Argument conditions for Hurwitz and Schur polynomials from network theory</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>1994-02-01</date><risdate>1994</risdate><volume>39</volume><issue>2</issue><spage>345</spage><epage>346</epage><pages>345-346</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>The monotonicity conditions, recently given, for the arguments of Hurwitz polynomials, as well as some of their associated polynomials, are, very simply, derived using well-established results in network theory. Corresponding results for Schur polynomials may also be obtained.< ></abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/9.272330</doi><tpages>2</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9286 |
ispartof | IEEE transactions on automatic control, 1994-02, Vol.39 (2), p.345-346 |
issn | 0018-9286 1558-2523 |
language | eng |
recordid | cdi_pascalfrancis_primary_4058521 |
source | IEEE Electronic Library (IEL) |
subjects | Applied sciences Automatic control Computer science control theory systems Control systems Control theory. Systems Design optimization Error correction Exact sciences and technology High definition video Instruction sets Polynomials Process control System theory Three-term control Transfer functions |
title | Argument conditions for Hurwitz and Schur polynomials from network theory |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T05%3A32%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Argument%20conditions%20for%20Hurwitz%20and%20Schur%20polynomials%20from%20network%20theory&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Bose,%20N.K.&rft.date=1994-02-01&rft.volume=39&rft.issue=2&rft.spage=345&rft.epage=346&rft.pages=345-346&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/9.272330&rft_dat=%3Cproquest_RIE%3E28572693%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28572693&rft_id=info:pmid/&rft_ieee_id=272330&rfr_iscdi=true |