Action principles for the Vlasov equation

Five action principles for the Vlasov–Poisson and Vlasov–Maxwell equations, which differ by the variables incorporated to describe the distribution of particles in phase space, are presented. Three action principles previously known for the Vlasov–Maxwell equations are altered so as to produce the V...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of fluids. B, Plasma physics Plasma physics, 1992-04, Vol.4 (4), p.771-777
Hauptverfasser: Ye, Huanchun, Morrison, P. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 777
container_issue 4
container_start_page 771
container_title Physics of fluids. B, Plasma physics
container_volume 4
creator Ye, Huanchun
Morrison, P. J.
description Five action principles for the Vlasov–Poisson and Vlasov–Maxwell equations, which differ by the variables incorporated to describe the distribution of particles in phase space, are presented. Three action principles previously known for the Vlasov–Maxwell equations are altered so as to produce the Vlasov–Poisson equation upon variation with respect to only the particle variables, and one action principle previously known for the Vlasov–Poisson equation is altered to produce the Vlasov–Maxwell equations upon variations with respect to particle and field variables independently. Also, a new action principle for both systems, which is called the leaf action, is presented. This new action has the desirable features of using only a single generating function as the dynamical variable for describing the particle distribution, and manifestly preserving invariants of the system known as Casimir invariants. The relationships between the various actions are described, and it is shown that the leaf action is a link between actions written in terms of Lagrangian and Eulerian variables.
doi_str_mv 10.1063/1.860231
format Article
fullrecord <record><control><sourceid>scitation_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_3850444</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>pfb</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-234d59a61447efdde7edc9f90b3fd6013a29554c87b65ac4889d76e3df9eb2693</originalsourceid><addsrcrecordid>eNp90EtLxDAUBeAgCo6j4E8o4sJZdMy7yXIYfMGAGxV3Ic2DqdSmJnHAf29rZXa6upuPczkHgHMElwhyco2WgkNM0AGYYcRJySB5PQQzKKQsBcboGJyk9AYhpoiyGVisTG5CV_Sx6UzTty4VPsQib13x0uoUdoX7-NQjOQVHXrfJnf3eOXi-vXla35ebx7uH9WpTGkJlLjGhlknNEaWV89a6ylkjvYQ18ZZDRDSWjFEjqpozbagQ0lbcEeulqzGXZA4uptyQcqOSabIzWxO6zpmsKgwZ59WAriZkYkgpOq-GAu86fikE1biDQmraYaCXE-11Mrr1UQ9F094TwSCldGCLiY0ffwr_F_mn3YW4d6q3nnwDdoV2gg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Action principles for the Vlasov equation</title><source>AIP Digital Archive</source><creator>Ye, Huanchun ; Morrison, P. J.</creator><creatorcontrib>Ye, Huanchun ; Morrison, P. J.</creatorcontrib><description>Five action principles for the Vlasov–Poisson and Vlasov–Maxwell equations, which differ by the variables incorporated to describe the distribution of particles in phase space, are presented. Three action principles previously known for the Vlasov–Maxwell equations are altered so as to produce the Vlasov–Poisson equation upon variation with respect to only the particle variables, and one action principle previously known for the Vlasov–Poisson equation is altered to produce the Vlasov–Maxwell equations upon variations with respect to particle and field variables independently. Also, a new action principle for both systems, which is called the leaf action, is presented. This new action has the desirable features of using only a single generating function as the dynamical variable for describing the particle distribution, and manifestly preserving invariants of the system known as Casimir invariants. The relationships between the various actions are described, and it is shown that the leaf action is a link between actions written in terms of Lagrangian and Eulerian variables.</description><identifier>ISSN: 0899-8221</identifier><identifier>EISSN: 2163-503X</identifier><identifier>DOI: 10.1063/1.860231</identifier><identifier>CODEN: PFBPEI</identifier><language>eng</language><publisher>New York, NY: American Institute of Physics</publisher><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY ; 700330 - Plasma Kinetics, Transport, &amp; Impurities- (1992-) ; ACTION INTEGRAL ; CANONICAL TRANSFORMATIONS ; COLLISIONLESS PLASMA ; CONSTRAINTS ; DIFFERENTIAL EQUATIONS ; DISTRIBUTION FUNCTIONS ; EQUATIONS ; Exact sciences and technology ; FUNCTIONALS ; FUNCTIONS ; HAMILTON-JACOBI EQUATIONS ; HAMILTONIAN FUNCTION ; INTEGRALS ; KINETIC EQUATIONS ; MATHEMATICAL SPACE ; MAXWELL EQUATIONS ; PARTIAL DIFFERENTIAL EQUATIONS ; PHASE SPACE ; Physics ; Physics of gases, plasmas and electric discharges ; Physics of plasmas and electric discharges ; PLASMA ; Plasma kinetic equations ; Plasma properties ; POISSON EQUATION ; SPACE ; TRANSFORMATIONS ; VARIATIONAL METHODS</subject><ispartof>Physics of fluids. B, Plasma physics, 1992-04, Vol.4 (4), p.771-777</ispartof><rights>American Institute of Physics</rights><rights>1994 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-234d59a61447efdde7edc9f90b3fd6013a29554c87b65ac4889d76e3df9eb2693</citedby><cites>FETCH-LOGICAL-c349t-234d59a61447efdde7edc9f90b3fd6013a29554c87b65ac4889d76e3df9eb2693</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/pfb/article-lookup/doi/10.1063/1.860231$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,780,784,885,1559,27924,27925,76390</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3850444$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/7205667$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ye, Huanchun</creatorcontrib><creatorcontrib>Morrison, P. J.</creatorcontrib><title>Action principles for the Vlasov equation</title><title>Physics of fluids. B, Plasma physics</title><description>Five action principles for the Vlasov–Poisson and Vlasov–Maxwell equations, which differ by the variables incorporated to describe the distribution of particles in phase space, are presented. Three action principles previously known for the Vlasov–Maxwell equations are altered so as to produce the Vlasov–Poisson equation upon variation with respect to only the particle variables, and one action principle previously known for the Vlasov–Poisson equation is altered to produce the Vlasov–Maxwell equations upon variations with respect to particle and field variables independently. Also, a new action principle for both systems, which is called the leaf action, is presented. This new action has the desirable features of using only a single generating function as the dynamical variable for describing the particle distribution, and manifestly preserving invariants of the system known as Casimir invariants. The relationships between the various actions are described, and it is shown that the leaf action is a link between actions written in terms of Lagrangian and Eulerian variables.</description><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><subject>700330 - Plasma Kinetics, Transport, &amp; Impurities- (1992-)</subject><subject>ACTION INTEGRAL</subject><subject>CANONICAL TRANSFORMATIONS</subject><subject>COLLISIONLESS PLASMA</subject><subject>CONSTRAINTS</subject><subject>DIFFERENTIAL EQUATIONS</subject><subject>DISTRIBUTION FUNCTIONS</subject><subject>EQUATIONS</subject><subject>Exact sciences and technology</subject><subject>FUNCTIONALS</subject><subject>FUNCTIONS</subject><subject>HAMILTON-JACOBI EQUATIONS</subject><subject>HAMILTONIAN FUNCTION</subject><subject>INTEGRALS</subject><subject>KINETIC EQUATIONS</subject><subject>MATHEMATICAL SPACE</subject><subject>MAXWELL EQUATIONS</subject><subject>PARTIAL DIFFERENTIAL EQUATIONS</subject><subject>PHASE SPACE</subject><subject>Physics</subject><subject>Physics of gases, plasmas and electric discharges</subject><subject>Physics of plasmas and electric discharges</subject><subject>PLASMA</subject><subject>Plasma kinetic equations</subject><subject>Plasma properties</subject><subject>POISSON EQUATION</subject><subject>SPACE</subject><subject>TRANSFORMATIONS</subject><subject>VARIATIONAL METHODS</subject><issn>0899-8221</issn><issn>2163-503X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><recordid>eNp90EtLxDAUBeAgCo6j4E8o4sJZdMy7yXIYfMGAGxV3Ic2DqdSmJnHAf29rZXa6upuPczkHgHMElwhyco2WgkNM0AGYYcRJySB5PQQzKKQsBcboGJyk9AYhpoiyGVisTG5CV_Sx6UzTty4VPsQib13x0uoUdoX7-NQjOQVHXrfJnf3eOXi-vXla35ebx7uH9WpTGkJlLjGhlknNEaWV89a6ylkjvYQ18ZZDRDSWjFEjqpozbagQ0lbcEeulqzGXZA4uptyQcqOSabIzWxO6zpmsKgwZ59WAriZkYkgpOq-GAu86fikE1biDQmraYaCXE-11Mrr1UQ9F094TwSCldGCLiY0ffwr_F_mn3YW4d6q3nnwDdoV2gg</recordid><startdate>19920401</startdate><enddate>19920401</enddate><creator>Ye, Huanchun</creator><creator>Morrison, P. J.</creator><general>American Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>19920401</creationdate><title>Action principles for the Vlasov equation</title><author>Ye, Huanchun ; Morrison, P. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-234d59a61447efdde7edc9f90b3fd6013a29554c87b65ac4889d76e3df9eb2693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</topic><topic>700330 - Plasma Kinetics, Transport, &amp; Impurities- (1992-)</topic><topic>ACTION INTEGRAL</topic><topic>CANONICAL TRANSFORMATIONS</topic><topic>COLLISIONLESS PLASMA</topic><topic>CONSTRAINTS</topic><topic>DIFFERENTIAL EQUATIONS</topic><topic>DISTRIBUTION FUNCTIONS</topic><topic>EQUATIONS</topic><topic>Exact sciences and technology</topic><topic>FUNCTIONALS</topic><topic>FUNCTIONS</topic><topic>HAMILTON-JACOBI EQUATIONS</topic><topic>HAMILTONIAN FUNCTION</topic><topic>INTEGRALS</topic><topic>KINETIC EQUATIONS</topic><topic>MATHEMATICAL SPACE</topic><topic>MAXWELL EQUATIONS</topic><topic>PARTIAL DIFFERENTIAL EQUATIONS</topic><topic>PHASE SPACE</topic><topic>Physics</topic><topic>Physics of gases, plasmas and electric discharges</topic><topic>Physics of plasmas and electric discharges</topic><topic>PLASMA</topic><topic>Plasma kinetic equations</topic><topic>Plasma properties</topic><topic>POISSON EQUATION</topic><topic>SPACE</topic><topic>TRANSFORMATIONS</topic><topic>VARIATIONAL METHODS</topic><toplevel>online_resources</toplevel><creatorcontrib>Ye, Huanchun</creatorcontrib><creatorcontrib>Morrison, P. J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Physics of fluids. B, Plasma physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ye, Huanchun</au><au>Morrison, P. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Action principles for the Vlasov equation</atitle><jtitle>Physics of fluids. B, Plasma physics</jtitle><date>1992-04-01</date><risdate>1992</risdate><volume>4</volume><issue>4</issue><spage>771</spage><epage>777</epage><pages>771-777</pages><issn>0899-8221</issn><eissn>2163-503X</eissn><coden>PFBPEI</coden><abstract>Five action principles for the Vlasov–Poisson and Vlasov–Maxwell equations, which differ by the variables incorporated to describe the distribution of particles in phase space, are presented. Three action principles previously known for the Vlasov–Maxwell equations are altered so as to produce the Vlasov–Poisson equation upon variation with respect to only the particle variables, and one action principle previously known for the Vlasov–Poisson equation is altered to produce the Vlasov–Maxwell equations upon variations with respect to particle and field variables independently. Also, a new action principle for both systems, which is called the leaf action, is presented. This new action has the desirable features of using only a single generating function as the dynamical variable for describing the particle distribution, and manifestly preserving invariants of the system known as Casimir invariants. The relationships between the various actions are described, and it is shown that the leaf action is a link between actions written in terms of Lagrangian and Eulerian variables.</abstract><cop>New York, NY</cop><pub>American Institute of Physics</pub><doi>10.1063/1.860231</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0899-8221
ispartof Physics of fluids. B, Plasma physics, 1992-04, Vol.4 (4), p.771-777
issn 0899-8221
2163-503X
language eng
recordid cdi_pascalfrancis_primary_3850444
source AIP Digital Archive
subjects 70 PLASMA PHYSICS AND FUSION TECHNOLOGY
700330 - Plasma Kinetics, Transport, & Impurities- (1992-)
ACTION INTEGRAL
CANONICAL TRANSFORMATIONS
COLLISIONLESS PLASMA
CONSTRAINTS
DIFFERENTIAL EQUATIONS
DISTRIBUTION FUNCTIONS
EQUATIONS
Exact sciences and technology
FUNCTIONALS
FUNCTIONS
HAMILTON-JACOBI EQUATIONS
HAMILTONIAN FUNCTION
INTEGRALS
KINETIC EQUATIONS
MATHEMATICAL SPACE
MAXWELL EQUATIONS
PARTIAL DIFFERENTIAL EQUATIONS
PHASE SPACE
Physics
Physics of gases, plasmas and electric discharges
Physics of plasmas and electric discharges
PLASMA
Plasma kinetic equations
Plasma properties
POISSON EQUATION
SPACE
TRANSFORMATIONS
VARIATIONAL METHODS
title Action principles for the Vlasov equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T14%3A27%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Action%20principles%20for%20the%20Vlasov%20equation&rft.jtitle=Physics%20of%20fluids.%20B,%20Plasma%20physics&rft.au=Ye,%20Huanchun&rft.date=1992-04-01&rft.volume=4&rft.issue=4&rft.spage=771&rft.epage=777&rft.pages=771-777&rft.issn=0899-8221&rft.eissn=2163-503X&rft.coden=PFBPEI&rft_id=info:doi/10.1063/1.860231&rft_dat=%3Cscitation_pasca%3Epfb%3C/scitation_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true