NUMERICAL INTEGRATION EFFECTIVENESS IN INVERSE DYNAMICS COMPUTATION OF MANIPULATOR SYSTEMS
Numerical integration plays a crucial role in the inverse dynamics computation of robot manipulators, which directly affect the success of real-time implementation of manipulator system control. This article investigates four prominent numerical integration methods commonly used to integrate the inv...
Gespeichert in:
Veröffentlicht in: | Cybernetics and systems 1993, Vol.24 (5), p.355-374 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 374 |
---|---|
container_issue | 5 |
container_start_page | 355 |
container_title | Cybernetics and systems |
container_volume | 24 |
creator | LEE, TIAN-SOON LIN, YUEH-JAW |
description | Numerical integration plays a crucial role in the inverse dynamics computation of robot manipulators, which directly affect the success of real-time implementation of manipulator system control. This article investigates four prominent numerical integration methods commonly used to integrate the inverse dynamics of a manipulator system (namely, modified Euler, Runge-Kutta, Adams-Bashforth and Hamming's methods). The study is based on the inverse dynamics computation of a two-link open-chain manipulator to which the four numerical integrating methods are applied in turn. The simulation results suggest that the Adams-Bashforth method is not suitable for integrating inverse dynamics of a manipulator system for step size greater than 0.01 s. For any given step size, the modified Euler method is approximately twice as efficient as the Runge-Kutta method. However, these two methods are piecewisely stable for various step sizes. It is also observed that Hamming's method should not be used in integrating the inverse dynamics of a manipulator system because it suffers from stability problems. In addition, the simulation results show that it will be better to choose smaller step size to control a task if high precision is required. Moreover, it is found that smaller step size will make an unstable numerical method become stable. |
doi_str_mv | 10.1080/01969729308961715 |
format | Article |
fullrecord | <record><control><sourceid>pascalfrancis_infor</sourceid><recordid>TN_cdi_pascalfrancis_primary_3774206</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3774206</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-44ab6e1c04e5248f4ac9f531489c1725824de9d6c9f861c1b872929a24daf3033</originalsourceid><addsrcrecordid>eNp1UE1Lw0AUXETBWv0B3nLwGt3PZBe8hLipgSYp-SjUS9huE6ikTdkUSv-9W6JeRHjw4M3MG2YAeETwGUEOXyASnvCxIJALD_mIXYGJBXzXY4xcg8kFdy0B34K7YfiEEBLiown4SKtE5nEYzJ04LeUsD8o4Sx0ZRTIs46VMZVFYxM5S5oV03lZpkMRh4YRZsqjKkZ1FThKk8aKaB2WWO8WqKGVS3IObVnVD8_C9p6CKZBm-u_NsdjF0NcHs6FKq1l6DNKQNw5S3VGnRMoIoFxr5mHFMN43YePbKPaTRmtuYWCh7Vi2xMaYAjX-16YfBNG19MNudMucawfpSTv2nHKt5GjUHNWjVtUbt9Xb4FRLfpxh6lvY60rb7tjc7depNt6mP6tz15kdD_nf5Arl-bo0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>NUMERICAL INTEGRATION EFFECTIVENESS IN INVERSE DYNAMICS COMPUTATION OF MANIPULATOR SYSTEMS</title><source>Taylor & Francis</source><creator>LEE, TIAN-SOON ; LIN, YUEH-JAW</creator><creatorcontrib>LEE, TIAN-SOON ; LIN, YUEH-JAW</creatorcontrib><description>Numerical integration plays a crucial role in the inverse dynamics computation of robot manipulators, which directly affect the success of real-time implementation of manipulator system control. This article investigates four prominent numerical integration methods commonly used to integrate the inverse dynamics of a manipulator system (namely, modified Euler, Runge-Kutta, Adams-Bashforth and Hamming's methods). The study is based on the inverse dynamics computation of a two-link open-chain manipulator to which the four numerical integrating methods are applied in turn. The simulation results suggest that the Adams-Bashforth method is not suitable for integrating inverse dynamics of a manipulator system for step size greater than 0.01 s. For any given step size, the modified Euler method is approximately twice as efficient as the Runge-Kutta method. However, these two methods are piecewisely stable for various step sizes. It is also observed that Hamming's method should not be used in integrating the inverse dynamics of a manipulator system because it suffers from stability problems. In addition, the simulation results show that it will be better to choose smaller step size to control a task if high precision is required. Moreover, it is found that smaller step size will make an unstable numerical method become stable.</description><identifier>ISSN: 0196-9722</identifier><identifier>EISSN: 1087-6553</identifier><identifier>DOI: 10.1080/01969729308961715</identifier><identifier>CODEN: CYSYDH</identifier><language>eng</language><publisher>London: Taylor & Francis Group</publisher><subject>Applied sciences ; Computer science; control theory; systems ; Control theory. Systems ; Exact sciences and technology ; Robotics</subject><ispartof>Cybernetics and systems, 1993, Vol.24 (5), p.355-374</ispartof><rights>Copyright Taylor & Francis Group, LLC 1993</rights><rights>1994 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-44ab6e1c04e5248f4ac9f531489c1725824de9d6c9f861c1b872929a24daf3033</citedby><cites>FETCH-LOGICAL-c325t-44ab6e1c04e5248f4ac9f531489c1725824de9d6c9f861c1b872929a24daf3033</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/01969729308961715$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/01969729308961715$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,776,780,4010,27900,27901,27902,59620,60409</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=3774206$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>LEE, TIAN-SOON</creatorcontrib><creatorcontrib>LIN, YUEH-JAW</creatorcontrib><title>NUMERICAL INTEGRATION EFFECTIVENESS IN INVERSE DYNAMICS COMPUTATION OF MANIPULATOR SYSTEMS</title><title>Cybernetics and systems</title><description>Numerical integration plays a crucial role in the inverse dynamics computation of robot manipulators, which directly affect the success of real-time implementation of manipulator system control. This article investigates four prominent numerical integration methods commonly used to integrate the inverse dynamics of a manipulator system (namely, modified Euler, Runge-Kutta, Adams-Bashforth and Hamming's methods). The study is based on the inverse dynamics computation of a two-link open-chain manipulator to which the four numerical integrating methods are applied in turn. The simulation results suggest that the Adams-Bashforth method is not suitable for integrating inverse dynamics of a manipulator system for step size greater than 0.01 s. For any given step size, the modified Euler method is approximately twice as efficient as the Runge-Kutta method. However, these two methods are piecewisely stable for various step sizes. It is also observed that Hamming's method should not be used in integrating the inverse dynamics of a manipulator system because it suffers from stability problems. In addition, the simulation results show that it will be better to choose smaller step size to control a task if high precision is required. Moreover, it is found that smaller step size will make an unstable numerical method become stable.</description><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Control theory. Systems</subject><subject>Exact sciences and technology</subject><subject>Robotics</subject><issn>0196-9722</issn><issn>1087-6553</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><recordid>eNp1UE1Lw0AUXETBWv0B3nLwGt3PZBe8hLipgSYp-SjUS9huE6ikTdkUSv-9W6JeRHjw4M3MG2YAeETwGUEOXyASnvCxIJALD_mIXYGJBXzXY4xcg8kFdy0B34K7YfiEEBLiown4SKtE5nEYzJ04LeUsD8o4Sx0ZRTIs46VMZVFYxM5S5oV03lZpkMRh4YRZsqjKkZ1FThKk8aKaB2WWO8WqKGVS3IObVnVD8_C9p6CKZBm-u_NsdjF0NcHs6FKq1l6DNKQNw5S3VGnRMoIoFxr5mHFMN43YePbKPaTRmtuYWCh7Vi2xMaYAjX-16YfBNG19MNudMucawfpSTv2nHKt5GjUHNWjVtUbt9Xb4FRLfpxh6lvY60rb7tjc7depNt6mP6tz15kdD_nf5Arl-bo0</recordid><startdate>1993</startdate><enddate>1993</enddate><creator>LEE, TIAN-SOON</creator><creator>LIN, YUEH-JAW</creator><general>Taylor & Francis Group</general><general>Taylor & Francis</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>1993</creationdate><title>NUMERICAL INTEGRATION EFFECTIVENESS IN INVERSE DYNAMICS COMPUTATION OF MANIPULATOR SYSTEMS</title><author>LEE, TIAN-SOON ; LIN, YUEH-JAW</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-44ab6e1c04e5248f4ac9f531489c1725824de9d6c9f861c1b872929a24daf3033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Control theory. Systems</topic><topic>Exact sciences and technology</topic><topic>Robotics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>LEE, TIAN-SOON</creatorcontrib><creatorcontrib>LIN, YUEH-JAW</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Cybernetics and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>LEE, TIAN-SOON</au><au>LIN, YUEH-JAW</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>NUMERICAL INTEGRATION EFFECTIVENESS IN INVERSE DYNAMICS COMPUTATION OF MANIPULATOR SYSTEMS</atitle><jtitle>Cybernetics and systems</jtitle><date>1993</date><risdate>1993</risdate><volume>24</volume><issue>5</issue><spage>355</spage><epage>374</epage><pages>355-374</pages><issn>0196-9722</issn><eissn>1087-6553</eissn><coden>CYSYDH</coden><abstract>Numerical integration plays a crucial role in the inverse dynamics computation of robot manipulators, which directly affect the success of real-time implementation of manipulator system control. This article investigates four prominent numerical integration methods commonly used to integrate the inverse dynamics of a manipulator system (namely, modified Euler, Runge-Kutta, Adams-Bashforth and Hamming's methods). The study is based on the inverse dynamics computation of a two-link open-chain manipulator to which the four numerical integrating methods are applied in turn. The simulation results suggest that the Adams-Bashforth method is not suitable for integrating inverse dynamics of a manipulator system for step size greater than 0.01 s. For any given step size, the modified Euler method is approximately twice as efficient as the Runge-Kutta method. However, these two methods are piecewisely stable for various step sizes. It is also observed that Hamming's method should not be used in integrating the inverse dynamics of a manipulator system because it suffers from stability problems. In addition, the simulation results show that it will be better to choose smaller step size to control a task if high precision is required. Moreover, it is found that smaller step size will make an unstable numerical method become stable.</abstract><cop>London</cop><pub>Taylor & Francis Group</pub><doi>10.1080/01969729308961715</doi><tpages>20</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0196-9722 |
ispartof | Cybernetics and systems, 1993, Vol.24 (5), p.355-374 |
issn | 0196-9722 1087-6553 |
language | eng |
recordid | cdi_pascalfrancis_primary_3774206 |
source | Taylor & Francis |
subjects | Applied sciences Computer science control theory systems Control theory. Systems Exact sciences and technology Robotics |
title | NUMERICAL INTEGRATION EFFECTIVENESS IN INVERSE DYNAMICS COMPUTATION OF MANIPULATOR SYSTEMS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T03%3A06%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=NUMERICAL%20INTEGRATION%20EFFECTIVENESS%20IN%20INVERSE%20DYNAMICS%20COMPUTATION%20OF%20MANIPULATOR%20SYSTEMS&rft.jtitle=Cybernetics%20and%20systems&rft.au=LEE,%20TIAN-SOON&rft.date=1993&rft.volume=24&rft.issue=5&rft.spage=355&rft.epage=374&rft.pages=355-374&rft.issn=0196-9722&rft.eissn=1087-6553&rft.coden=CYSYDH&rft_id=info:doi/10.1080/01969729308961715&rft_dat=%3Cpascalfrancis_infor%3E3774206%3C/pascalfrancis_infor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |