A study of wavelets for the solution of electromagnetic integral equations

The use of wavelet basis functions for the efficient solution of electromagnetic integral equations is studied. It has previously been demonstrated that the use of wavelets for expansion and testing functions produces a sparse moment-method matrix. Here, this effect is examined and analyzed in terms...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on antennas and propagation 1995-08, Vol.43 (8), p.802-810
Hauptverfasser: Wagner, R.L., Weng Cho Chew
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 810
container_issue 8
container_start_page 802
container_title IEEE transactions on antennas and propagation
container_volume 43
creator Wagner, R.L.
Weng Cho Chew
description The use of wavelet basis functions for the efficient solution of electromagnetic integral equations is studied. It has previously been demonstrated that the use of wavelets for expansion and testing functions produces a sparse moment-method matrix. Here, this effect is examined and analyzed in terms of the radiation/receiving characteristics of the wavelet basis functions. The limitations of wavelets as an efficient solution technique are discussed, and a comparison is made to other fast algorithms.< >
doi_str_mv 10.1109/8.402199
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_3659933</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>402199</ieee_id><sourcerecordid>28617226</sourcerecordid><originalsourceid>FETCH-LOGICAL-c401t-212f63fa70e2c20e0107d688a71d415bf38953573d784759e4798ba2c9b5a5b3</originalsourceid><addsrcrecordid>eNqF0M1LwzAYBvAgCs4pePaUg4iXziRNmuQ4xE8GXnbwVtL0zax0zZakyv57WzZ29fTy8vx4Dg9C15TMKCX6Qc04YVTrEzShQqiMMUZP0YQQqjLNis9zdBHj9_ByxfkEvc9xTH29w97hX_MDLaSInQ84fQGOvu1T47sxHBKbgl-bVQepsbjpEqyCaTFsezOieInOnGkjXB3uFC2fn5aPr9ni4-Xtcb7ILCc0ZYwyV-TOSALMMgKEElkXShlJa05F5XKlRS5kXkvFpdDApVaVYVZXwogqn6K7fe0m-G0PMZXrJlpoW9OB72PJVEElY8X_sCADVCO830MbfIwBXLkJzdqEXUlJOY5aqnI_6kBvD50mWtO6YDrbxKPPCzGgfGA3e9YAwDE9dPwBDGx9eA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26017286</pqid></control><display><type>article</type><title>A study of wavelets for the solution of electromagnetic integral equations</title><source>IEEE Electronic Library (IEL)</source><creator>Wagner, R.L. ; Weng Cho Chew</creator><creatorcontrib>Wagner, R.L. ; Weng Cho Chew</creatorcontrib><description>The use of wavelet basis functions for the efficient solution of electromagnetic integral equations is studied. It has previously been demonstrated that the use of wavelets for expansion and testing functions produces a sparse moment-method matrix. Here, this effect is examined and analyzed in terms of the radiation/receiving characteristics of the wavelet basis functions. The limitations of wavelets as an efficient solution technique are discussed, and a comparison is made to other fast algorithms.&lt; &gt;</description><identifier>ISSN: 0018-926X</identifier><identifier>EISSN: 1558-2221</identifier><identifier>DOI: 10.1109/8.402199</identifier><identifier>CODEN: IETPAK</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Classical and quantum physics: mechanics and fields ; Classical mechanics of continuous media: general mathematical aspects ; Discrete wavelet transforms ; Electromagnetic radiation ; Electromagnetic scattering ; Engine cylinders ; Exact sciences and technology ; Integral equations ; Kernel ; Message-oriented middleware ; Physics ; Resonance ; Sparse matrices ; Wavelet analysis ; Waves and wave propagation: general mathematical aspects</subject><ispartof>IEEE transactions on antennas and propagation, 1995-08, Vol.43 (8), p.802-810</ispartof><rights>1995 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c401t-212f63fa70e2c20e0107d688a71d415bf38953573d784759e4798ba2c9b5a5b3</citedby><cites>FETCH-LOGICAL-c401t-212f63fa70e2c20e0107d688a71d415bf38953573d784759e4798ba2c9b5a5b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/402199$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/402199$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3659933$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Wagner, R.L.</creatorcontrib><creatorcontrib>Weng Cho Chew</creatorcontrib><title>A study of wavelets for the solution of electromagnetic integral equations</title><title>IEEE transactions on antennas and propagation</title><addtitle>TAP</addtitle><description>The use of wavelet basis functions for the efficient solution of electromagnetic integral equations is studied. It has previously been demonstrated that the use of wavelets for expansion and testing functions produces a sparse moment-method matrix. Here, this effect is examined and analyzed in terms of the radiation/receiving characteristics of the wavelet basis functions. The limitations of wavelets as an efficient solution technique are discussed, and a comparison is made to other fast algorithms.&lt; &gt;</description><subject>Classical and quantum physics: mechanics and fields</subject><subject>Classical mechanics of continuous media: general mathematical aspects</subject><subject>Discrete wavelet transforms</subject><subject>Electromagnetic radiation</subject><subject>Electromagnetic scattering</subject><subject>Engine cylinders</subject><subject>Exact sciences and technology</subject><subject>Integral equations</subject><subject>Kernel</subject><subject>Message-oriented middleware</subject><subject>Physics</subject><subject>Resonance</subject><subject>Sparse matrices</subject><subject>Wavelet analysis</subject><subject>Waves and wave propagation: general mathematical aspects</subject><issn>0018-926X</issn><issn>1558-2221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><recordid>eNqF0M1LwzAYBvAgCs4pePaUg4iXziRNmuQ4xE8GXnbwVtL0zax0zZakyv57WzZ29fTy8vx4Dg9C15TMKCX6Qc04YVTrEzShQqiMMUZP0YQQqjLNis9zdBHj9_ByxfkEvc9xTH29w97hX_MDLaSInQ84fQGOvu1T47sxHBKbgl-bVQepsbjpEqyCaTFsezOieInOnGkjXB3uFC2fn5aPr9ni4-Xtcb7ILCc0ZYwyV-TOSALMMgKEElkXShlJa05F5XKlRS5kXkvFpdDApVaVYVZXwogqn6K7fe0m-G0PMZXrJlpoW9OB72PJVEElY8X_sCADVCO830MbfIwBXLkJzdqEXUlJOY5aqnI_6kBvD50mWtO6YDrbxKPPCzGgfGA3e9YAwDE9dPwBDGx9eA</recordid><startdate>19950801</startdate><enddate>19950801</enddate><creator>Wagner, R.L.</creator><creator>Weng Cho Chew</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7SP</scope></search><sort><creationdate>19950801</creationdate><title>A study of wavelets for the solution of electromagnetic integral equations</title><author>Wagner, R.L. ; Weng Cho Chew</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c401t-212f63fa70e2c20e0107d688a71d415bf38953573d784759e4798ba2c9b5a5b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Classical and quantum physics: mechanics and fields</topic><topic>Classical mechanics of continuous media: general mathematical aspects</topic><topic>Discrete wavelet transforms</topic><topic>Electromagnetic radiation</topic><topic>Electromagnetic scattering</topic><topic>Engine cylinders</topic><topic>Exact sciences and technology</topic><topic>Integral equations</topic><topic>Kernel</topic><topic>Message-oriented middleware</topic><topic>Physics</topic><topic>Resonance</topic><topic>Sparse matrices</topic><topic>Wavelet analysis</topic><topic>Waves and wave propagation: general mathematical aspects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wagner, R.L.</creatorcontrib><creatorcontrib>Weng Cho Chew</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Electronics &amp; Communications Abstracts</collection><jtitle>IEEE transactions on antennas and propagation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wagner, R.L.</au><au>Weng Cho Chew</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A study of wavelets for the solution of electromagnetic integral equations</atitle><jtitle>IEEE transactions on antennas and propagation</jtitle><stitle>TAP</stitle><date>1995-08-01</date><risdate>1995</risdate><volume>43</volume><issue>8</issue><spage>802</spage><epage>810</epage><pages>802-810</pages><issn>0018-926X</issn><eissn>1558-2221</eissn><coden>IETPAK</coden><abstract>The use of wavelet basis functions for the efficient solution of electromagnetic integral equations is studied. It has previously been demonstrated that the use of wavelets for expansion and testing functions produces a sparse moment-method matrix. Here, this effect is examined and analyzed in terms of the radiation/receiving characteristics of the wavelet basis functions. The limitations of wavelets as an efficient solution technique are discussed, and a comparison is made to other fast algorithms.&lt; &gt;</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/8.402199</doi><tpages>9</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-926X
ispartof IEEE transactions on antennas and propagation, 1995-08, Vol.43 (8), p.802-810
issn 0018-926X
1558-2221
language eng
recordid cdi_pascalfrancis_primary_3659933
source IEEE Electronic Library (IEL)
subjects Classical and quantum physics: mechanics and fields
Classical mechanics of continuous media: general mathematical aspects
Discrete wavelet transforms
Electromagnetic radiation
Electromagnetic scattering
Engine cylinders
Exact sciences and technology
Integral equations
Kernel
Message-oriented middleware
Physics
Resonance
Sparse matrices
Wavelet analysis
Waves and wave propagation: general mathematical aspects
title A study of wavelets for the solution of electromagnetic integral equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T07%3A19%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20study%20of%20wavelets%20for%20the%20solution%20of%20electromagnetic%20integral%20equations&rft.jtitle=IEEE%20transactions%20on%20antennas%20and%20propagation&rft.au=Wagner,%20R.L.&rft.date=1995-08-01&rft.volume=43&rft.issue=8&rft.spage=802&rft.epage=810&rft.pages=802-810&rft.issn=0018-926X&rft.eissn=1558-2221&rft.coden=IETPAK&rft_id=info:doi/10.1109/8.402199&rft_dat=%3Cproquest_RIE%3E28617226%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26017286&rft_id=info:pmid/&rft_ieee_id=402199&rfr_iscdi=true