A study of wavelets for the solution of electromagnetic integral equations
The use of wavelet basis functions for the efficient solution of electromagnetic integral equations is studied. It has previously been demonstrated that the use of wavelets for expansion and testing functions produces a sparse moment-method matrix. Here, this effect is examined and analyzed in terms...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on antennas and propagation 1995-08, Vol.43 (8), p.802-810 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 810 |
---|---|
container_issue | 8 |
container_start_page | 802 |
container_title | IEEE transactions on antennas and propagation |
container_volume | 43 |
creator | Wagner, R.L. Weng Cho Chew |
description | The use of wavelet basis functions for the efficient solution of electromagnetic integral equations is studied. It has previously been demonstrated that the use of wavelets for expansion and testing functions produces a sparse moment-method matrix. Here, this effect is examined and analyzed in terms of the radiation/receiving characteristics of the wavelet basis functions. The limitations of wavelets as an efficient solution technique are discussed, and a comparison is made to other fast algorithms.< > |
doi_str_mv | 10.1109/8.402199 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_3659933</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>402199</ieee_id><sourcerecordid>28617226</sourcerecordid><originalsourceid>FETCH-LOGICAL-c401t-212f63fa70e2c20e0107d688a71d415bf38953573d784759e4798ba2c9b5a5b3</originalsourceid><addsrcrecordid>eNqF0M1LwzAYBvAgCs4pePaUg4iXziRNmuQ4xE8GXnbwVtL0zax0zZakyv57WzZ29fTy8vx4Dg9C15TMKCX6Qc04YVTrEzShQqiMMUZP0YQQqjLNis9zdBHj9_ByxfkEvc9xTH29w97hX_MDLaSInQ84fQGOvu1T47sxHBKbgl-bVQepsbjpEqyCaTFsezOieInOnGkjXB3uFC2fn5aPr9ni4-Xtcb7ILCc0ZYwyV-TOSALMMgKEElkXShlJa05F5XKlRS5kXkvFpdDApVaVYVZXwogqn6K7fe0m-G0PMZXrJlpoW9OB72PJVEElY8X_sCADVCO830MbfIwBXLkJzdqEXUlJOY5aqnI_6kBvD50mWtO6YDrbxKPPCzGgfGA3e9YAwDE9dPwBDGx9eA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26017286</pqid></control><display><type>article</type><title>A study of wavelets for the solution of electromagnetic integral equations</title><source>IEEE Electronic Library (IEL)</source><creator>Wagner, R.L. ; Weng Cho Chew</creator><creatorcontrib>Wagner, R.L. ; Weng Cho Chew</creatorcontrib><description>The use of wavelet basis functions for the efficient solution of electromagnetic integral equations is studied. It has previously been demonstrated that the use of wavelets for expansion and testing functions produces a sparse moment-method matrix. Here, this effect is examined and analyzed in terms of the radiation/receiving characteristics of the wavelet basis functions. The limitations of wavelets as an efficient solution technique are discussed, and a comparison is made to other fast algorithms.< ></description><identifier>ISSN: 0018-926X</identifier><identifier>EISSN: 1558-2221</identifier><identifier>DOI: 10.1109/8.402199</identifier><identifier>CODEN: IETPAK</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Classical and quantum physics: mechanics and fields ; Classical mechanics of continuous media: general mathematical aspects ; Discrete wavelet transforms ; Electromagnetic radiation ; Electromagnetic scattering ; Engine cylinders ; Exact sciences and technology ; Integral equations ; Kernel ; Message-oriented middleware ; Physics ; Resonance ; Sparse matrices ; Wavelet analysis ; Waves and wave propagation: general mathematical aspects</subject><ispartof>IEEE transactions on antennas and propagation, 1995-08, Vol.43 (8), p.802-810</ispartof><rights>1995 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c401t-212f63fa70e2c20e0107d688a71d415bf38953573d784759e4798ba2c9b5a5b3</citedby><cites>FETCH-LOGICAL-c401t-212f63fa70e2c20e0107d688a71d415bf38953573d784759e4798ba2c9b5a5b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/402199$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/402199$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=3659933$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Wagner, R.L.</creatorcontrib><creatorcontrib>Weng Cho Chew</creatorcontrib><title>A study of wavelets for the solution of electromagnetic integral equations</title><title>IEEE transactions on antennas and propagation</title><addtitle>TAP</addtitle><description>The use of wavelet basis functions for the efficient solution of electromagnetic integral equations is studied. It has previously been demonstrated that the use of wavelets for expansion and testing functions produces a sparse moment-method matrix. Here, this effect is examined and analyzed in terms of the radiation/receiving characteristics of the wavelet basis functions. The limitations of wavelets as an efficient solution technique are discussed, and a comparison is made to other fast algorithms.< ></description><subject>Classical and quantum physics: mechanics and fields</subject><subject>Classical mechanics of continuous media: general mathematical aspects</subject><subject>Discrete wavelet transforms</subject><subject>Electromagnetic radiation</subject><subject>Electromagnetic scattering</subject><subject>Engine cylinders</subject><subject>Exact sciences and technology</subject><subject>Integral equations</subject><subject>Kernel</subject><subject>Message-oriented middleware</subject><subject>Physics</subject><subject>Resonance</subject><subject>Sparse matrices</subject><subject>Wavelet analysis</subject><subject>Waves and wave propagation: general mathematical aspects</subject><issn>0018-926X</issn><issn>1558-2221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><recordid>eNqF0M1LwzAYBvAgCs4pePaUg4iXziRNmuQ4xE8GXnbwVtL0zax0zZakyv57WzZ29fTy8vx4Dg9C15TMKCX6Qc04YVTrEzShQqiMMUZP0YQQqjLNis9zdBHj9_ByxfkEvc9xTH29w97hX_MDLaSInQ84fQGOvu1T47sxHBKbgl-bVQepsbjpEqyCaTFsezOieInOnGkjXB3uFC2fn5aPr9ni4-Xtcb7ILCc0ZYwyV-TOSALMMgKEElkXShlJa05F5XKlRS5kXkvFpdDApVaVYVZXwogqn6K7fe0m-G0PMZXrJlpoW9OB72PJVEElY8X_sCADVCO830MbfIwBXLkJzdqEXUlJOY5aqnI_6kBvD50mWtO6YDrbxKPPCzGgfGA3e9YAwDE9dPwBDGx9eA</recordid><startdate>19950801</startdate><enddate>19950801</enddate><creator>Wagner, R.L.</creator><creator>Weng Cho Chew</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7SP</scope></search><sort><creationdate>19950801</creationdate><title>A study of wavelets for the solution of electromagnetic integral equations</title><author>Wagner, R.L. ; Weng Cho Chew</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c401t-212f63fa70e2c20e0107d688a71d415bf38953573d784759e4798ba2c9b5a5b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Classical and quantum physics: mechanics and fields</topic><topic>Classical mechanics of continuous media: general mathematical aspects</topic><topic>Discrete wavelet transforms</topic><topic>Electromagnetic radiation</topic><topic>Electromagnetic scattering</topic><topic>Engine cylinders</topic><topic>Exact sciences and technology</topic><topic>Integral equations</topic><topic>Kernel</topic><topic>Message-oriented middleware</topic><topic>Physics</topic><topic>Resonance</topic><topic>Sparse matrices</topic><topic>Wavelet analysis</topic><topic>Waves and wave propagation: general mathematical aspects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wagner, R.L.</creatorcontrib><creatorcontrib>Weng Cho Chew</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Electronics & Communications Abstracts</collection><jtitle>IEEE transactions on antennas and propagation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wagner, R.L.</au><au>Weng Cho Chew</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A study of wavelets for the solution of electromagnetic integral equations</atitle><jtitle>IEEE transactions on antennas and propagation</jtitle><stitle>TAP</stitle><date>1995-08-01</date><risdate>1995</risdate><volume>43</volume><issue>8</issue><spage>802</spage><epage>810</epage><pages>802-810</pages><issn>0018-926X</issn><eissn>1558-2221</eissn><coden>IETPAK</coden><abstract>The use of wavelet basis functions for the efficient solution of electromagnetic integral equations is studied. It has previously been demonstrated that the use of wavelets for expansion and testing functions produces a sparse moment-method matrix. Here, this effect is examined and analyzed in terms of the radiation/receiving characteristics of the wavelet basis functions. The limitations of wavelets as an efficient solution technique are discussed, and a comparison is made to other fast algorithms.< ></abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/8.402199</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-926X |
ispartof | IEEE transactions on antennas and propagation, 1995-08, Vol.43 (8), p.802-810 |
issn | 0018-926X 1558-2221 |
language | eng |
recordid | cdi_pascalfrancis_primary_3659933 |
source | IEEE Electronic Library (IEL) |
subjects | Classical and quantum physics: mechanics and fields Classical mechanics of continuous media: general mathematical aspects Discrete wavelet transforms Electromagnetic radiation Electromagnetic scattering Engine cylinders Exact sciences and technology Integral equations Kernel Message-oriented middleware Physics Resonance Sparse matrices Wavelet analysis Waves and wave propagation: general mathematical aspects |
title | A study of wavelets for the solution of electromagnetic integral equations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T07%3A19%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20study%20of%20wavelets%20for%20the%20solution%20of%20electromagnetic%20integral%20equations&rft.jtitle=IEEE%20transactions%20on%20antennas%20and%20propagation&rft.au=Wagner,%20R.L.&rft.date=1995-08-01&rft.volume=43&rft.issue=8&rft.spage=802&rft.epage=810&rft.pages=802-810&rft.issn=0018-926X&rft.eissn=1558-2221&rft.coden=IETPAK&rft_id=info:doi/10.1109/8.402199&rft_dat=%3Cproquest_RIE%3E28617226%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26017286&rft_id=info:pmid/&rft_ieee_id=402199&rfr_iscdi=true |