Identification of unknown parameters for heat conductivity equations

An algorithm for identification of unknown parameters of nonlinear heat conductivity equations is proposed. Solutions of equations observed with an error are input data of the algorithm. Finite dimensional approximations of input signals and their derivatives are used. The algorithm utilizes the ide...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerical functional analysis and optimization 1995-01, Vol.16 (5-6), p.583-599
1. Verfasser: Botkin, N. D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 599
container_issue 5-6
container_start_page 583
container_title Numerical functional analysis and optimization
container_volume 16
creator Botkin, N. D
description An algorithm for identification of unknown parameters of nonlinear heat conductivity equations is proposed. Solutions of equations observed with an error are input data of the algorithm. Finite dimensional approximations of input signals and their derivatives are used. The algorithm utilizes the idea of the direct minimization of the residual of equations written in an appropriate variational form. The convergence of the algorithm output to the set of all parameters compatible with the exact solution is proved. The paper is illustrated by computer simulations related to the identification of heat conductivity coefficients depending upon spatial variables and the temperature.
doi_str_mv 10.1080/01630569508816634
format Article
fullrecord <record><control><sourceid>pascalfrancis_cross</sourceid><recordid>TN_cdi_pascalfrancis_primary_3646831</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3646831</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-1a426d4c8e5d983b6c8f0f19fe884d148465cdfa00273ec58549114314832dd3</originalsourceid><addsrcrecordid>eNp1kLtOAzEQRS0EEiHwAXQuaBdsj-14JRoUXpEi0aRfGT-EYWMH2yHK37MhQIOoprjnzGguQueUXFKiyBWhEoiQrSBKUSmBH6ARFcAaxuXkEI12eTMAcIxOSnklhABr1QjdzqyLNfhgdA0p4uTxOr7FtIl4pbNeuupywT5l_OJ0xSZFuzY1fIS6xe59_SWVU3TkdV_c2fcco8X93WL62MyfHmbTm3ljgE1qQzVn0nKjnLCtgmdplCeett4pxS3likthrNeEsAk4I5TgLaUchgSYtTBGdL_W5FRKdr5b5bDUedtR0u1a6P60MDgXe2eli9G9zzqaUH5FkFwqoAN2vcdCHH5d6k3Kve2q3vYp_zjw_5VPVqlvMA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Identification of unknown parameters for heat conductivity equations</title><source>Taylor &amp; Francis:Master (3349 titles)</source><creator>Botkin, N. D</creator><creatorcontrib>Botkin, N. D</creatorcontrib><description>An algorithm for identification of unknown parameters of nonlinear heat conductivity equations is proposed. Solutions of equations observed with an error are input data of the algorithm. Finite dimensional approximations of input signals and their derivatives are used. The algorithm utilizes the idea of the direct minimization of the residual of equations written in an appropriate variational form. The convergence of the algorithm output to the set of all parameters compatible with the exact solution is proved. The paper is illustrated by computer simulations related to the identification of heat conductivity coefficients depending upon spatial variables and the temperature.</description><identifier>ISSN: 0163-0563</identifier><identifier>EISSN: 1532-2467</identifier><identifier>DOI: 10.1080/01630569508816634</identifier><identifier>CODEN: NFAODL</identifier><language>eng</language><publisher>Philadelphia, PA: Marcel Dekker, Inc</publisher><subject>Algorithms for functional approximation ; Exact sciences and technology ; Mathematical methods in physics ; Mathematics ; Numerical analysis ; Numerical analysis. Scientific computation ; Numerical approximation and analysis ; Partial differential equations, miscellaneous problems ; Physics ; Sciences and techniques of general use</subject><ispartof>Numerical functional analysis and optimization, 1995-01, Vol.16 (5-6), p.583-599</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 1995</rights><rights>1995 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-1a426d4c8e5d983b6c8f0f19fe884d148465cdfa00273ec58549114314832dd3</citedby><cites>FETCH-LOGICAL-c327t-1a426d4c8e5d983b6c8f0f19fe884d148465cdfa00273ec58549114314832dd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/01630569508816634$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/01630569508816634$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,780,784,4024,27923,27924,27925,59647,60436</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3646831$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Botkin, N. D</creatorcontrib><title>Identification of unknown parameters for heat conductivity equations</title><title>Numerical functional analysis and optimization</title><description>An algorithm for identification of unknown parameters of nonlinear heat conductivity equations is proposed. Solutions of equations observed with an error are input data of the algorithm. Finite dimensional approximations of input signals and their derivatives are used. The algorithm utilizes the idea of the direct minimization of the residual of equations written in an appropriate variational form. The convergence of the algorithm output to the set of all parameters compatible with the exact solution is proved. The paper is illustrated by computer simulations related to the identification of heat conductivity coefficients depending upon spatial variables and the temperature.</description><subject>Algorithms for functional approximation</subject><subject>Exact sciences and technology</subject><subject>Mathematical methods in physics</subject><subject>Mathematics</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Numerical approximation and analysis</subject><subject>Partial differential equations, miscellaneous problems</subject><subject>Physics</subject><subject>Sciences and techniques of general use</subject><issn>0163-0563</issn><issn>1532-2467</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><recordid>eNp1kLtOAzEQRS0EEiHwAXQuaBdsj-14JRoUXpEi0aRfGT-EYWMH2yHK37MhQIOoprjnzGguQueUXFKiyBWhEoiQrSBKUSmBH6ARFcAaxuXkEI12eTMAcIxOSnklhABr1QjdzqyLNfhgdA0p4uTxOr7FtIl4pbNeuupywT5l_OJ0xSZFuzY1fIS6xe59_SWVU3TkdV_c2fcco8X93WL62MyfHmbTm3ljgE1qQzVn0nKjnLCtgmdplCeett4pxS3likthrNeEsAk4I5TgLaUchgSYtTBGdL_W5FRKdr5b5bDUedtR0u1a6P60MDgXe2eli9G9zzqaUH5FkFwqoAN2vcdCHH5d6k3Kve2q3vYp_zjw_5VPVqlvMA</recordid><startdate>19950101</startdate><enddate>19950101</enddate><creator>Botkin, N. D</creator><general>Marcel Dekker, Inc</general><general>Taylor &amp; Francis</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19950101</creationdate><title>Identification of unknown parameters for heat conductivity equations</title><author>Botkin, N. D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-1a426d4c8e5d983b6c8f0f19fe884d148465cdfa00273ec58549114314832dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Algorithms for functional approximation</topic><topic>Exact sciences and technology</topic><topic>Mathematical methods in physics</topic><topic>Mathematics</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Numerical approximation and analysis</topic><topic>Partial differential equations, miscellaneous problems</topic><topic>Physics</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Botkin, N. D</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Numerical functional analysis and optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Botkin, N. D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of unknown parameters for heat conductivity equations</atitle><jtitle>Numerical functional analysis and optimization</jtitle><date>1995-01-01</date><risdate>1995</risdate><volume>16</volume><issue>5-6</issue><spage>583</spage><epage>599</epage><pages>583-599</pages><issn>0163-0563</issn><eissn>1532-2467</eissn><coden>NFAODL</coden><abstract>An algorithm for identification of unknown parameters of nonlinear heat conductivity equations is proposed. Solutions of equations observed with an error are input data of the algorithm. Finite dimensional approximations of input signals and their derivatives are used. The algorithm utilizes the idea of the direct minimization of the residual of equations written in an appropriate variational form. The convergence of the algorithm output to the set of all parameters compatible with the exact solution is proved. The paper is illustrated by computer simulations related to the identification of heat conductivity coefficients depending upon spatial variables and the temperature.</abstract><cop>Philadelphia, PA</cop><pub>Marcel Dekker, Inc</pub><doi>10.1080/01630569508816634</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0163-0563
ispartof Numerical functional analysis and optimization, 1995-01, Vol.16 (5-6), p.583-599
issn 0163-0563
1532-2467
language eng
recordid cdi_pascalfrancis_primary_3646831
source Taylor & Francis:Master (3349 titles)
subjects Algorithms for functional approximation
Exact sciences and technology
Mathematical methods in physics
Mathematics
Numerical analysis
Numerical analysis. Scientific computation
Numerical approximation and analysis
Partial differential equations, miscellaneous problems
Physics
Sciences and techniques of general use
title Identification of unknown parameters for heat conductivity equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T11%3A32%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20unknown%20parameters%20for%20heat%20conductivity%20equations&rft.jtitle=Numerical%20functional%20analysis%20and%20optimization&rft.au=Botkin,%20N.%20D&rft.date=1995-01-01&rft.volume=16&rft.issue=5-6&rft.spage=583&rft.epage=599&rft.pages=583-599&rft.issn=0163-0563&rft.eissn=1532-2467&rft.coden=NFAODL&rft_id=info:doi/10.1080/01630569508816634&rft_dat=%3Cpascalfrancis_cross%3E3646831%3C/pascalfrancis_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true