Identification of unknown parameters for heat conductivity equations
An algorithm for identification of unknown parameters of nonlinear heat conductivity equations is proposed. Solutions of equations observed with an error are input data of the algorithm. Finite dimensional approximations of input signals and their derivatives are used. The algorithm utilizes the ide...
Gespeichert in:
Veröffentlicht in: | Numerical functional analysis and optimization 1995-01, Vol.16 (5-6), p.583-599 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 599 |
---|---|
container_issue | 5-6 |
container_start_page | 583 |
container_title | Numerical functional analysis and optimization |
container_volume | 16 |
creator | Botkin, N. D |
description | An algorithm for identification of unknown parameters of nonlinear heat conductivity equations is proposed. Solutions of equations observed with an error are input data of the algorithm. Finite dimensional approximations of input signals and their derivatives are used. The algorithm utilizes the idea of the direct minimization of the residual of equations written in an appropriate variational form. The convergence of the algorithm output to the set of all parameters compatible with the exact solution is proved. The paper is illustrated by computer simulations related to the identification of heat conductivity coefficients depending upon spatial variables and the temperature. |
doi_str_mv | 10.1080/01630569508816634 |
format | Article |
fullrecord | <record><control><sourceid>pascalfrancis_cross</sourceid><recordid>TN_cdi_pascalfrancis_primary_3646831</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3646831</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-1a426d4c8e5d983b6c8f0f19fe884d148465cdfa00273ec58549114314832dd3</originalsourceid><addsrcrecordid>eNp1kLtOAzEQRS0EEiHwAXQuaBdsj-14JRoUXpEi0aRfGT-EYWMH2yHK37MhQIOoprjnzGguQueUXFKiyBWhEoiQrSBKUSmBH6ARFcAaxuXkEI12eTMAcIxOSnklhABr1QjdzqyLNfhgdA0p4uTxOr7FtIl4pbNeuupywT5l_OJ0xSZFuzY1fIS6xe59_SWVU3TkdV_c2fcco8X93WL62MyfHmbTm3ljgE1qQzVn0nKjnLCtgmdplCeett4pxS3likthrNeEsAk4I5TgLaUchgSYtTBGdL_W5FRKdr5b5bDUedtR0u1a6P60MDgXe2eli9G9zzqaUH5FkFwqoAN2vcdCHH5d6k3Kve2q3vYp_zjw_5VPVqlvMA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Identification of unknown parameters for heat conductivity equations</title><source>Taylor & Francis:Master (3349 titles)</source><creator>Botkin, N. D</creator><creatorcontrib>Botkin, N. D</creatorcontrib><description>An algorithm for identification of unknown parameters of nonlinear heat conductivity equations is proposed. Solutions of equations observed with an error are input data of the algorithm. Finite dimensional approximations of input signals and their derivatives are used. The algorithm utilizes the idea of the direct minimization of the residual of equations written in an appropriate variational form. The convergence of the algorithm output to the set of all parameters compatible with the exact solution is proved. The paper is illustrated by computer simulations related to the identification of heat conductivity coefficients depending upon spatial variables and the temperature.</description><identifier>ISSN: 0163-0563</identifier><identifier>EISSN: 1532-2467</identifier><identifier>DOI: 10.1080/01630569508816634</identifier><identifier>CODEN: NFAODL</identifier><language>eng</language><publisher>Philadelphia, PA: Marcel Dekker, Inc</publisher><subject>Algorithms for functional approximation ; Exact sciences and technology ; Mathematical methods in physics ; Mathematics ; Numerical analysis ; Numerical analysis. Scientific computation ; Numerical approximation and analysis ; Partial differential equations, miscellaneous problems ; Physics ; Sciences and techniques of general use</subject><ispartof>Numerical functional analysis and optimization, 1995-01, Vol.16 (5-6), p.583-599</ispartof><rights>Copyright Taylor & Francis Group, LLC 1995</rights><rights>1995 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-1a426d4c8e5d983b6c8f0f19fe884d148465cdfa00273ec58549114314832dd3</citedby><cites>FETCH-LOGICAL-c327t-1a426d4c8e5d983b6c8f0f19fe884d148465cdfa00273ec58549114314832dd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/01630569508816634$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/01630569508816634$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,780,784,4024,27923,27924,27925,59647,60436</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=3646831$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Botkin, N. D</creatorcontrib><title>Identification of unknown parameters for heat conductivity equations</title><title>Numerical functional analysis and optimization</title><description>An algorithm for identification of unknown parameters of nonlinear heat conductivity equations is proposed. Solutions of equations observed with an error are input data of the algorithm. Finite dimensional approximations of input signals and their derivatives are used. The algorithm utilizes the idea of the direct minimization of the residual of equations written in an appropriate variational form. The convergence of the algorithm output to the set of all parameters compatible with the exact solution is proved. The paper is illustrated by computer simulations related to the identification of heat conductivity coefficients depending upon spatial variables and the temperature.</description><subject>Algorithms for functional approximation</subject><subject>Exact sciences and technology</subject><subject>Mathematical methods in physics</subject><subject>Mathematics</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Numerical approximation and analysis</subject><subject>Partial differential equations, miscellaneous problems</subject><subject>Physics</subject><subject>Sciences and techniques of general use</subject><issn>0163-0563</issn><issn>1532-2467</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><recordid>eNp1kLtOAzEQRS0EEiHwAXQuaBdsj-14JRoUXpEi0aRfGT-EYWMH2yHK37MhQIOoprjnzGguQueUXFKiyBWhEoiQrSBKUSmBH6ARFcAaxuXkEI12eTMAcIxOSnklhABr1QjdzqyLNfhgdA0p4uTxOr7FtIl4pbNeuupywT5l_OJ0xSZFuzY1fIS6xe59_SWVU3TkdV_c2fcco8X93WL62MyfHmbTm3ljgE1qQzVn0nKjnLCtgmdplCeett4pxS3likthrNeEsAk4I5TgLaUchgSYtTBGdL_W5FRKdr5b5bDUedtR0u1a6P60MDgXe2eli9G9zzqaUH5FkFwqoAN2vcdCHH5d6k3Kve2q3vYp_zjw_5VPVqlvMA</recordid><startdate>19950101</startdate><enddate>19950101</enddate><creator>Botkin, N. D</creator><general>Marcel Dekker, Inc</general><general>Taylor & Francis</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19950101</creationdate><title>Identification of unknown parameters for heat conductivity equations</title><author>Botkin, N. D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-1a426d4c8e5d983b6c8f0f19fe884d148465cdfa00273ec58549114314832dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Algorithms for functional approximation</topic><topic>Exact sciences and technology</topic><topic>Mathematical methods in physics</topic><topic>Mathematics</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Numerical approximation and analysis</topic><topic>Partial differential equations, miscellaneous problems</topic><topic>Physics</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Botkin, N. D</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Numerical functional analysis and optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Botkin, N. D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of unknown parameters for heat conductivity equations</atitle><jtitle>Numerical functional analysis and optimization</jtitle><date>1995-01-01</date><risdate>1995</risdate><volume>16</volume><issue>5-6</issue><spage>583</spage><epage>599</epage><pages>583-599</pages><issn>0163-0563</issn><eissn>1532-2467</eissn><coden>NFAODL</coden><abstract>An algorithm for identification of unknown parameters of nonlinear heat conductivity equations is proposed. Solutions of equations observed with an error are input data of the algorithm. Finite dimensional approximations of input signals and their derivatives are used. The algorithm utilizes the idea of the direct minimization of the residual of equations written in an appropriate variational form. The convergence of the algorithm output to the set of all parameters compatible with the exact solution is proved. The paper is illustrated by computer simulations related to the identification of heat conductivity coefficients depending upon spatial variables and the temperature.</abstract><cop>Philadelphia, PA</cop><pub>Marcel Dekker, Inc</pub><doi>10.1080/01630569508816634</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0163-0563 |
ispartof | Numerical functional analysis and optimization, 1995-01, Vol.16 (5-6), p.583-599 |
issn | 0163-0563 1532-2467 |
language | eng |
recordid | cdi_pascalfrancis_primary_3646831 |
source | Taylor & Francis:Master (3349 titles) |
subjects | Algorithms for functional approximation Exact sciences and technology Mathematical methods in physics Mathematics Numerical analysis Numerical analysis. Scientific computation Numerical approximation and analysis Partial differential equations, miscellaneous problems Physics Sciences and techniques of general use |
title | Identification of unknown parameters for heat conductivity equations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T11%3A32%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20unknown%20parameters%20for%20heat%20conductivity%20equations&rft.jtitle=Numerical%20functional%20analysis%20and%20optimization&rft.au=Botkin,%20N.%20D&rft.date=1995-01-01&rft.volume=16&rft.issue=5-6&rft.spage=583&rft.epage=599&rft.pages=583-599&rft.issn=0163-0563&rft.eissn=1532-2467&rft.coden=NFAODL&rft_id=info:doi/10.1080/01630569508816634&rft_dat=%3Cpascalfrancis_cross%3E3646831%3C/pascalfrancis_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |