Salicylic acid in rice. Biosynthesis, conjugation, and possible role

Salicylic acid (SA) is a natural inducer of disease resistance in some dicotyledonous plants. Rice seedlings (Oryza sativa L.) had the highest levels of SA among all plants tested for SA content (between 0.01 and 37.19 microgram/g fresh weight). The second leaf of rice seedlings had slightly lower S...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant physiology (Bethesda) 1995-06, Vol.108 (2), p.633-639
Hauptverfasser: Silverman, Paul, Seskar, Mirjana, Dwight Kanter, Schweizer, Patrick, Métraux, Jean-Pierre, Raskin, Ilya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 639
container_issue 2
container_start_page 633
container_title Plant physiology (Bethesda)
container_volume 108
creator Silverman, Paul
Seskar, Mirjana
Dwight Kanter
Schweizer, Patrick
Métraux, Jean-Pierre
Raskin, Ilya
description Salicylic acid (SA) is a natural inducer of disease resistance in some dicotyledonous plants. Rice seedlings (Oryza sativa L.) had the highest levels of SA among all plants tested for SA content (between 0.01 and 37.19 microgram/g fresh weight). The second leaf of rice seedlings had slightly lower SA levels than any younger leaves. To investigate the role of SA in rice disease resistance, we examined the levels of SA in rice (cv M-201) after inoculation with bacterial and fungal pathogens. SA levels did not increase after inoculation with either the avirulent pathogen Pseudomonas syringae D20 or with the rice pathogens Magnaporthe grisea, the causal agent of rice blast, and Rhizoctonia solani, the causal agent of sheath blight. However leaf SA levels in 28 rice varieties showed a correlation with generalized blast resistance, indicating that SA may play a role as a constitutive defense compound. Biosynthesis and metabolism of SA in rice was studied and compared to that of tobacco. Rice shoots converted [14C]cinnamic acid to SA and the lignin precursors p-coumaric and ferulic acids, whereas [14C]benzoic acid was readily converted to SA. The data suggest that in rice, as in tobacco, SA is synthesized from cinnamic acid via benzoic acid. In rice shoots, SA is largely present as a free acid; however, exogenously supplied SA was converted to beta-O-D-glucosylSA by an SA-inducible glucosyltransferase (SA-GTase). A 7-fold induction of SA-GTase activity was observed after 6 h of feeding 1 mM SA. Both rice roots and shoots showed similar patterns of SA-GTase induction by SA, with maximal induction after feeding with 1 mM SA.
doi_str_mv 10.1104/pp.108.2.633
format Article
fullrecord <record><control><sourceid>jstor_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_3614305</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>4276587</jstor_id><sourcerecordid>4276587</sourcerecordid><originalsourceid>FETCH-LOGICAL-f226t-25b17cccde572859faf2fccc7c48f775ba7cbd848b63f39df8800b5bb5f4758d3</originalsourceid><addsrcrecordid>eNo9js1LxDAUxIMoWFdvHkVy8LitL19NetT1ExY8rHtekrRZU2pTknrY_97AiofhveE3DIPQNYGKEOD301QRUBWtasZOUEEEoyUVXJ2iAiD_oFRzji5S6gGAMMIL9LTRg7eHLKytb7EfcfS2q_CjD-kwzl9d8mmJbRj7n72efRiXWI8tnkJK3gwdjmHoLtGZ00Pqrv7uAm1fnj9Xb-X64_V99bAuHaX1nKcYIq21bSckVaJx2lGXvbRcOSmF0dKaVnFlauZY0zqlAIwwRjguhWrZAt0deyedrB5c1KP1aTdF_63jYcdqwhmIHLs5xvo0h_iPOZW1UDLj2yN2Ouz0PuaG7YY0jQTgkjfAfgG821-3</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Salicylic acid in rice. Biosynthesis, conjugation, and possible role</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Jstor Complete Legacy</source><source>Alma/SFX Local Collection</source><creator>Silverman, Paul ; Seskar, Mirjana ; Dwight Kanter ; Schweizer, Patrick ; Métraux, Jean-Pierre ; Raskin, Ilya</creator><creatorcontrib>Silverman, Paul ; Seskar, Mirjana ; Dwight Kanter ; Schweizer, Patrick ; Métraux, Jean-Pierre ; Raskin, Ilya ; Rutgers University, New Brunswick, NJ</creatorcontrib><description>Salicylic acid (SA) is a natural inducer of disease resistance in some dicotyledonous plants. Rice seedlings (Oryza sativa L.) had the highest levels of SA among all plants tested for SA content (between 0.01 and 37.19 microgram/g fresh weight). The second leaf of rice seedlings had slightly lower SA levels than any younger leaves. To investigate the role of SA in rice disease resistance, we examined the levels of SA in rice (cv M-201) after inoculation with bacterial and fungal pathogens. SA levels did not increase after inoculation with either the avirulent pathogen Pseudomonas syringae D20 or with the rice pathogens Magnaporthe grisea, the causal agent of rice blast, and Rhizoctonia solani, the causal agent of sheath blight. However leaf SA levels in 28 rice varieties showed a correlation with generalized blast resistance, indicating that SA may play a role as a constitutive defense compound. Biosynthesis and metabolism of SA in rice was studied and compared to that of tobacco. Rice shoots converted [14C]cinnamic acid to SA and the lignin precursors p-coumaric and ferulic acids, whereas [14C]benzoic acid was readily converted to SA. The data suggest that in rice, as in tobacco, SA is synthesized from cinnamic acid via benzoic acid. In rice shoots, SA is largely present as a free acid; however, exogenously supplied SA was converted to beta-O-D-glucosylSA by an SA-inducible glucosyltransferase (SA-GTase). A 7-fold induction of SA-GTase activity was observed after 6 h of feeding 1 mM SA. Both rice roots and shoots showed similar patterns of SA-GTase induction by SA, with maximal induction after feeding with 1 mM SA.</description><identifier>ISSN: 0032-0889</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.108.2.633</identifier><identifier>CODEN: PPHYA5</identifier><language>eng</language><publisher>Rockville, MD: American Society of Plant Physiologists</publisher><subject>acide benzoique ; acide cinnamique ; acide salicylique ; acido benzoico ; acido cinamico ; acido salicilico ; actividad enzimatica ; activite enzymatique ; agent pathogene ; analisis cuantitativo ; analyse quantitative ; benzoic acid ; biochemical pathways ; Biochemistry and Enzymology ; Biological and medical sciences ; biosintesis ; biosynthese ; Biosynthesis ; Blasts ; chemical composition ; Chemical constitution ; cinnamic acid ; composicion quimica ; composition chimique ; disease resistance ; enfermedades fungosas ; enzymic activity ; feuille ; fitoalexina ; Fundamental and applied biological sciences. Psychology ; fungal diseases ; Generalities. Disease free stocks ; hojas ; Hydroxybenzoic acids ; Inoculation ; Leaves ; ligninas ; lignine ; lignins ; magnaporthe ; maladie fongique ; metabolism ; metabolisme ; metabolismo ; nicotiana tabacum ; organismos patogenos ; oryza sativa ; pathogenicity ; Pathogens ; patogenicidad ; phytoalexine ; phytoalexins ; Phytopathology. Animal pests. Plant and forest protection ; Plant physiology and development ; Plants ; plantulas ; plantule ; pouvoir pathogene ; pseudomonas syringae ; quantitative analysis ; racine ; raices ; resistance aux maladies ; resistencia a la enfermedad ; rhizoctonia solani ; Rice ; roots ; salicylic acids ; Seedlings ; stems ; Systemic acquired resistance ; tallo ; tige ; transferasas ; transferase ; transferases ; variedades ; variete ; varieties ; via bioquimica del metabolismo ; voie biochimique du metabolisme</subject><ispartof>Plant physiology (Bethesda), 1995-06, Vol.108 (2), p.633-639</ispartof><rights>Copyright 1995 American Society of Plant Physiologists</rights><rights>1995 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/4276587$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/4276587$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,778,782,801,27907,27908,58000,58233</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3614305$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Silverman, Paul</creatorcontrib><creatorcontrib>Seskar, Mirjana</creatorcontrib><creatorcontrib>Dwight Kanter</creatorcontrib><creatorcontrib>Schweizer, Patrick</creatorcontrib><creatorcontrib>Métraux, Jean-Pierre</creatorcontrib><creatorcontrib>Raskin, Ilya</creatorcontrib><creatorcontrib>Rutgers University, New Brunswick, NJ</creatorcontrib><title>Salicylic acid in rice. Biosynthesis, conjugation, and possible role</title><title>Plant physiology (Bethesda)</title><description>Salicylic acid (SA) is a natural inducer of disease resistance in some dicotyledonous plants. Rice seedlings (Oryza sativa L.) had the highest levels of SA among all plants tested for SA content (between 0.01 and 37.19 microgram/g fresh weight). The second leaf of rice seedlings had slightly lower SA levels than any younger leaves. To investigate the role of SA in rice disease resistance, we examined the levels of SA in rice (cv M-201) after inoculation with bacterial and fungal pathogens. SA levels did not increase after inoculation with either the avirulent pathogen Pseudomonas syringae D20 or with the rice pathogens Magnaporthe grisea, the causal agent of rice blast, and Rhizoctonia solani, the causal agent of sheath blight. However leaf SA levels in 28 rice varieties showed a correlation with generalized blast resistance, indicating that SA may play a role as a constitutive defense compound. Biosynthesis and metabolism of SA in rice was studied and compared to that of tobacco. Rice shoots converted [14C]cinnamic acid to SA and the lignin precursors p-coumaric and ferulic acids, whereas [14C]benzoic acid was readily converted to SA. The data suggest that in rice, as in tobacco, SA is synthesized from cinnamic acid via benzoic acid. In rice shoots, SA is largely present as a free acid; however, exogenously supplied SA was converted to beta-O-D-glucosylSA by an SA-inducible glucosyltransferase (SA-GTase). A 7-fold induction of SA-GTase activity was observed after 6 h of feeding 1 mM SA. Both rice roots and shoots showed similar patterns of SA-GTase induction by SA, with maximal induction after feeding with 1 mM SA.</description><subject>acide benzoique</subject><subject>acide cinnamique</subject><subject>acide salicylique</subject><subject>acido benzoico</subject><subject>acido cinamico</subject><subject>acido salicilico</subject><subject>actividad enzimatica</subject><subject>activite enzymatique</subject><subject>agent pathogene</subject><subject>analisis cuantitativo</subject><subject>analyse quantitative</subject><subject>benzoic acid</subject><subject>biochemical pathways</subject><subject>Biochemistry and Enzymology</subject><subject>Biological and medical sciences</subject><subject>biosintesis</subject><subject>biosynthese</subject><subject>Biosynthesis</subject><subject>Blasts</subject><subject>chemical composition</subject><subject>Chemical constitution</subject><subject>cinnamic acid</subject><subject>composicion quimica</subject><subject>composition chimique</subject><subject>disease resistance</subject><subject>enfermedades fungosas</subject><subject>enzymic activity</subject><subject>feuille</subject><subject>fitoalexina</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>fungal diseases</subject><subject>Generalities. Disease free stocks</subject><subject>hojas</subject><subject>Hydroxybenzoic acids</subject><subject>Inoculation</subject><subject>Leaves</subject><subject>ligninas</subject><subject>lignine</subject><subject>lignins</subject><subject>magnaporthe</subject><subject>maladie fongique</subject><subject>metabolism</subject><subject>metabolisme</subject><subject>metabolismo</subject><subject>nicotiana tabacum</subject><subject>organismos patogenos</subject><subject>oryza sativa</subject><subject>pathogenicity</subject><subject>Pathogens</subject><subject>patogenicidad</subject><subject>phytoalexine</subject><subject>phytoalexins</subject><subject>Phytopathology. Animal pests. Plant and forest protection</subject><subject>Plant physiology and development</subject><subject>Plants</subject><subject>plantulas</subject><subject>plantule</subject><subject>pouvoir pathogene</subject><subject>pseudomonas syringae</subject><subject>quantitative analysis</subject><subject>racine</subject><subject>raices</subject><subject>resistance aux maladies</subject><subject>resistencia a la enfermedad</subject><subject>rhizoctonia solani</subject><subject>Rice</subject><subject>roots</subject><subject>salicylic acids</subject><subject>Seedlings</subject><subject>stems</subject><subject>Systemic acquired resistance</subject><subject>tallo</subject><subject>tige</subject><subject>transferasas</subject><subject>transferase</subject><subject>transferases</subject><subject>variedades</subject><subject>variete</subject><subject>varieties</subject><subject>via bioquimica del metabolismo</subject><subject>voie biochimique du metabolisme</subject><issn>0032-0889</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><recordid>eNo9js1LxDAUxIMoWFdvHkVy8LitL19NetT1ExY8rHtekrRZU2pTknrY_97AiofhveE3DIPQNYGKEOD301QRUBWtasZOUEEEoyUVXJ2iAiD_oFRzji5S6gGAMMIL9LTRg7eHLKytb7EfcfS2q_CjD-kwzl9d8mmJbRj7n72efRiXWI8tnkJK3gwdjmHoLtGZ00Pqrv7uAm1fnj9Xb-X64_V99bAuHaX1nKcYIq21bSckVaJx2lGXvbRcOSmF0dKaVnFlauZY0zqlAIwwRjguhWrZAt0deyedrB5c1KP1aTdF_63jYcdqwhmIHLs5xvo0h_iPOZW1UDLj2yN2Ouz0PuaG7YY0jQTgkjfAfgG821-3</recordid><startdate>19950601</startdate><enddate>19950601</enddate><creator>Silverman, Paul</creator><creator>Seskar, Mirjana</creator><creator>Dwight Kanter</creator><creator>Schweizer, Patrick</creator><creator>Métraux, Jean-Pierre</creator><creator>Raskin, Ilya</creator><general>American Society of Plant Physiologists</general><scope>FBQ</scope><scope>IQODW</scope></search><sort><creationdate>19950601</creationdate><title>Salicylic acid in rice. Biosynthesis, conjugation, and possible role</title><author>Silverman, Paul ; Seskar, Mirjana ; Dwight Kanter ; Schweizer, Patrick ; Métraux, Jean-Pierre ; Raskin, Ilya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-f226t-25b17cccde572859faf2fccc7c48f775ba7cbd848b63f39df8800b5bb5f4758d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>acide benzoique</topic><topic>acide cinnamique</topic><topic>acide salicylique</topic><topic>acido benzoico</topic><topic>acido cinamico</topic><topic>acido salicilico</topic><topic>actividad enzimatica</topic><topic>activite enzymatique</topic><topic>agent pathogene</topic><topic>analisis cuantitativo</topic><topic>analyse quantitative</topic><topic>benzoic acid</topic><topic>biochemical pathways</topic><topic>Biochemistry and Enzymology</topic><topic>Biological and medical sciences</topic><topic>biosintesis</topic><topic>biosynthese</topic><topic>Biosynthesis</topic><topic>Blasts</topic><topic>chemical composition</topic><topic>Chemical constitution</topic><topic>cinnamic acid</topic><topic>composicion quimica</topic><topic>composition chimique</topic><topic>disease resistance</topic><topic>enfermedades fungosas</topic><topic>enzymic activity</topic><topic>feuille</topic><topic>fitoalexina</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>fungal diseases</topic><topic>Generalities. Disease free stocks</topic><topic>hojas</topic><topic>Hydroxybenzoic acids</topic><topic>Inoculation</topic><topic>Leaves</topic><topic>ligninas</topic><topic>lignine</topic><topic>lignins</topic><topic>magnaporthe</topic><topic>maladie fongique</topic><topic>metabolism</topic><topic>metabolisme</topic><topic>metabolismo</topic><topic>nicotiana tabacum</topic><topic>organismos patogenos</topic><topic>oryza sativa</topic><topic>pathogenicity</topic><topic>Pathogens</topic><topic>patogenicidad</topic><topic>phytoalexine</topic><topic>phytoalexins</topic><topic>Phytopathology. Animal pests. Plant and forest protection</topic><topic>Plant physiology and development</topic><topic>Plants</topic><topic>plantulas</topic><topic>plantule</topic><topic>pouvoir pathogene</topic><topic>pseudomonas syringae</topic><topic>quantitative analysis</topic><topic>racine</topic><topic>raices</topic><topic>resistance aux maladies</topic><topic>resistencia a la enfermedad</topic><topic>rhizoctonia solani</topic><topic>Rice</topic><topic>roots</topic><topic>salicylic acids</topic><topic>Seedlings</topic><topic>stems</topic><topic>Systemic acquired resistance</topic><topic>tallo</topic><topic>tige</topic><topic>transferasas</topic><topic>transferase</topic><topic>transferases</topic><topic>variedades</topic><topic>variete</topic><topic>varieties</topic><topic>via bioquimica del metabolismo</topic><topic>voie biochimique du metabolisme</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Silverman, Paul</creatorcontrib><creatorcontrib>Seskar, Mirjana</creatorcontrib><creatorcontrib>Dwight Kanter</creatorcontrib><creatorcontrib>Schweizer, Patrick</creatorcontrib><creatorcontrib>Métraux, Jean-Pierre</creatorcontrib><creatorcontrib>Raskin, Ilya</creatorcontrib><creatorcontrib>Rutgers University, New Brunswick, NJ</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Silverman, Paul</au><au>Seskar, Mirjana</au><au>Dwight Kanter</au><au>Schweizer, Patrick</au><au>Métraux, Jean-Pierre</au><au>Raskin, Ilya</au><aucorp>Rutgers University, New Brunswick, NJ</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Salicylic acid in rice. Biosynthesis, conjugation, and possible role</atitle><jtitle>Plant physiology (Bethesda)</jtitle><date>1995-06-01</date><risdate>1995</risdate><volume>108</volume><issue>2</issue><spage>633</spage><epage>639</epage><pages>633-639</pages><issn>0032-0889</issn><eissn>1532-2548</eissn><coden>PPHYA5</coden><abstract>Salicylic acid (SA) is a natural inducer of disease resistance in some dicotyledonous plants. Rice seedlings (Oryza sativa L.) had the highest levels of SA among all plants tested for SA content (between 0.01 and 37.19 microgram/g fresh weight). The second leaf of rice seedlings had slightly lower SA levels than any younger leaves. To investigate the role of SA in rice disease resistance, we examined the levels of SA in rice (cv M-201) after inoculation with bacterial and fungal pathogens. SA levels did not increase after inoculation with either the avirulent pathogen Pseudomonas syringae D20 or with the rice pathogens Magnaporthe grisea, the causal agent of rice blast, and Rhizoctonia solani, the causal agent of sheath blight. However leaf SA levels in 28 rice varieties showed a correlation with generalized blast resistance, indicating that SA may play a role as a constitutive defense compound. Biosynthesis and metabolism of SA in rice was studied and compared to that of tobacco. Rice shoots converted [14C]cinnamic acid to SA and the lignin precursors p-coumaric and ferulic acids, whereas [14C]benzoic acid was readily converted to SA. The data suggest that in rice, as in tobacco, SA is synthesized from cinnamic acid via benzoic acid. In rice shoots, SA is largely present as a free acid; however, exogenously supplied SA was converted to beta-O-D-glucosylSA by an SA-inducible glucosyltransferase (SA-GTase). A 7-fold induction of SA-GTase activity was observed after 6 h of feeding 1 mM SA. Both rice roots and shoots showed similar patterns of SA-GTase induction by SA, with maximal induction after feeding with 1 mM SA.</abstract><cop>Rockville, MD</cop><pub>American Society of Plant Physiologists</pub><doi>10.1104/pp.108.2.633</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0032-0889
ispartof Plant physiology (Bethesda), 1995-06, Vol.108 (2), p.633-639
issn 0032-0889
1532-2548
language eng
recordid cdi_pascalfrancis_primary_3614305
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Jstor Complete Legacy; Alma/SFX Local Collection
subjects acide benzoique
acide cinnamique
acide salicylique
acido benzoico
acido cinamico
acido salicilico
actividad enzimatica
activite enzymatique
agent pathogene
analisis cuantitativo
analyse quantitative
benzoic acid
biochemical pathways
Biochemistry and Enzymology
Biological and medical sciences
biosintesis
biosynthese
Biosynthesis
Blasts
chemical composition
Chemical constitution
cinnamic acid
composicion quimica
composition chimique
disease resistance
enfermedades fungosas
enzymic activity
feuille
fitoalexina
Fundamental and applied biological sciences. Psychology
fungal diseases
Generalities. Disease free stocks
hojas
Hydroxybenzoic acids
Inoculation
Leaves
ligninas
lignine
lignins
magnaporthe
maladie fongique
metabolism
metabolisme
metabolismo
nicotiana tabacum
organismos patogenos
oryza sativa
pathogenicity
Pathogens
patogenicidad
phytoalexine
phytoalexins
Phytopathology. Animal pests. Plant and forest protection
Plant physiology and development
Plants
plantulas
plantule
pouvoir pathogene
pseudomonas syringae
quantitative analysis
racine
raices
resistance aux maladies
resistencia a la enfermedad
rhizoctonia solani
Rice
roots
salicylic acids
Seedlings
stems
Systemic acquired resistance
tallo
tige
transferasas
transferase
transferases
variedades
variete
varieties
via bioquimica del metabolismo
voie biochimique du metabolisme
title Salicylic acid in rice. Biosynthesis, conjugation, and possible role
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T07%3A28%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Salicylic%20acid%20in%20rice.%20Biosynthesis,%20conjugation,%20and%20possible%20role&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Silverman,%20Paul&rft.aucorp=Rutgers%20University,%20New%20Brunswick,%20NJ&rft.date=1995-06-01&rft.volume=108&rft.issue=2&rft.spage=633&rft.epage=639&rft.pages=633-639&rft.issn=0032-0889&rft.eissn=1532-2548&rft.coden=PPHYA5&rft_id=info:doi/10.1104/pp.108.2.633&rft_dat=%3Cjstor_pasca%3E4276587%3C/jstor_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=4276587&rfr_iscdi=true