Salicylic acid in rice. Biosynthesis, conjugation, and possible role
Salicylic acid (SA) is a natural inducer of disease resistance in some dicotyledonous plants. Rice seedlings (Oryza sativa L.) had the highest levels of SA among all plants tested for SA content (between 0.01 and 37.19 microgram/g fresh weight). The second leaf of rice seedlings had slightly lower S...
Gespeichert in:
Veröffentlicht in: | Plant physiology (Bethesda) 1995-06, Vol.108 (2), p.633-639 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 639 |
---|---|
container_issue | 2 |
container_start_page | 633 |
container_title | Plant physiology (Bethesda) |
container_volume | 108 |
creator | Silverman, Paul Seskar, Mirjana Dwight Kanter Schweizer, Patrick Métraux, Jean-Pierre Raskin, Ilya |
description | Salicylic acid (SA) is a natural inducer of disease resistance in some dicotyledonous plants. Rice seedlings (Oryza sativa L.) had the highest levels of SA among all plants tested for SA content (between 0.01 and 37.19 microgram/g fresh weight). The second leaf of rice seedlings had slightly lower SA levels than any younger leaves. To investigate the role of SA in rice disease resistance, we examined the levels of SA in rice (cv M-201) after inoculation with bacterial and fungal pathogens. SA levels did not increase after inoculation with either the avirulent pathogen Pseudomonas syringae D20 or with the rice pathogens Magnaporthe grisea, the causal agent of rice blast, and Rhizoctonia solani, the causal agent of sheath blight. However leaf SA levels in 28 rice varieties showed a correlation with generalized blast resistance, indicating that SA may play a role as a constitutive defense compound. Biosynthesis and metabolism of SA in rice was studied and compared to that of tobacco. Rice shoots converted [14C]cinnamic acid to SA and the lignin precursors p-coumaric and ferulic acids, whereas [14C]benzoic acid was readily converted to SA. The data suggest that in rice, as in tobacco, SA is synthesized from cinnamic acid via benzoic acid. In rice shoots, SA is largely present as a free acid; however, exogenously supplied SA was converted to beta-O-D-glucosylSA by an SA-inducible glucosyltransferase (SA-GTase). A 7-fold induction of SA-GTase activity was observed after 6 h of feeding 1 mM SA. Both rice roots and shoots showed similar patterns of SA-GTase induction by SA, with maximal induction after feeding with 1 mM SA. |
doi_str_mv | 10.1104/pp.108.2.633 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_3614305</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>4276587</jstor_id><sourcerecordid>4276587</sourcerecordid><originalsourceid>FETCH-LOGICAL-f226t-25b17cccde572859faf2fccc7c48f775ba7cbd848b63f39df8800b5bb5f4758d3</originalsourceid><addsrcrecordid>eNo9js1LxDAUxIMoWFdvHkVy8LitL19NetT1ExY8rHtekrRZU2pTknrY_97AiofhveE3DIPQNYGKEOD301QRUBWtasZOUEEEoyUVXJ2iAiD_oFRzji5S6gGAMMIL9LTRg7eHLKytb7EfcfS2q_CjD-kwzl9d8mmJbRj7n72efRiXWI8tnkJK3gwdjmHoLtGZ00Pqrv7uAm1fnj9Xb-X64_V99bAuHaX1nKcYIq21bSckVaJx2lGXvbRcOSmF0dKaVnFlauZY0zqlAIwwRjguhWrZAt0deyedrB5c1KP1aTdF_63jYcdqwhmIHLs5xvo0h_iPOZW1UDLj2yN2Ouz0PuaG7YY0jQTgkjfAfgG821-3</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Salicylic acid in rice. Biosynthesis, conjugation, and possible role</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Jstor Complete Legacy</source><source>Alma/SFX Local Collection</source><creator>Silverman, Paul ; Seskar, Mirjana ; Dwight Kanter ; Schweizer, Patrick ; Métraux, Jean-Pierre ; Raskin, Ilya</creator><creatorcontrib>Silverman, Paul ; Seskar, Mirjana ; Dwight Kanter ; Schweizer, Patrick ; Métraux, Jean-Pierre ; Raskin, Ilya ; Rutgers University, New Brunswick, NJ</creatorcontrib><description>Salicylic acid (SA) is a natural inducer of disease resistance in some dicotyledonous plants. Rice seedlings (Oryza sativa L.) had the highest levels of SA among all plants tested for SA content (between 0.01 and 37.19 microgram/g fresh weight). The second leaf of rice seedlings had slightly lower SA levels than any younger leaves. To investigate the role of SA in rice disease resistance, we examined the levels of SA in rice (cv M-201) after inoculation with bacterial and fungal pathogens. SA levels did not increase after inoculation with either the avirulent pathogen Pseudomonas syringae D20 or with the rice pathogens Magnaporthe grisea, the causal agent of rice blast, and Rhizoctonia solani, the causal agent of sheath blight. However leaf SA levels in 28 rice varieties showed a correlation with generalized blast resistance, indicating that SA may play a role as a constitutive defense compound. Biosynthesis and metabolism of SA in rice was studied and compared to that of tobacco. Rice shoots converted [14C]cinnamic acid to SA and the lignin precursors p-coumaric and ferulic acids, whereas [14C]benzoic acid was readily converted to SA. The data suggest that in rice, as in tobacco, SA is synthesized from cinnamic acid via benzoic acid. In rice shoots, SA is largely present as a free acid; however, exogenously supplied SA was converted to beta-O-D-glucosylSA by an SA-inducible glucosyltransferase (SA-GTase). A 7-fold induction of SA-GTase activity was observed after 6 h of feeding 1 mM SA. Both rice roots and shoots showed similar patterns of SA-GTase induction by SA, with maximal induction after feeding with 1 mM SA.</description><identifier>ISSN: 0032-0889</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.108.2.633</identifier><identifier>CODEN: PPHYA5</identifier><language>eng</language><publisher>Rockville, MD: American Society of Plant Physiologists</publisher><subject>acide benzoique ; acide cinnamique ; acide salicylique ; acido benzoico ; acido cinamico ; acido salicilico ; actividad enzimatica ; activite enzymatique ; agent pathogene ; analisis cuantitativo ; analyse quantitative ; benzoic acid ; biochemical pathways ; Biochemistry and Enzymology ; Biological and medical sciences ; biosintesis ; biosynthese ; Biosynthesis ; Blasts ; chemical composition ; Chemical constitution ; cinnamic acid ; composicion quimica ; composition chimique ; disease resistance ; enfermedades fungosas ; enzymic activity ; feuille ; fitoalexina ; Fundamental and applied biological sciences. Psychology ; fungal diseases ; Generalities. Disease free stocks ; hojas ; Hydroxybenzoic acids ; Inoculation ; Leaves ; ligninas ; lignine ; lignins ; magnaporthe ; maladie fongique ; metabolism ; metabolisme ; metabolismo ; nicotiana tabacum ; organismos patogenos ; oryza sativa ; pathogenicity ; Pathogens ; patogenicidad ; phytoalexine ; phytoalexins ; Phytopathology. Animal pests. Plant and forest protection ; Plant physiology and development ; Plants ; plantulas ; plantule ; pouvoir pathogene ; pseudomonas syringae ; quantitative analysis ; racine ; raices ; resistance aux maladies ; resistencia a la enfermedad ; rhizoctonia solani ; Rice ; roots ; salicylic acids ; Seedlings ; stems ; Systemic acquired resistance ; tallo ; tige ; transferasas ; transferase ; transferases ; variedades ; variete ; varieties ; via bioquimica del metabolismo ; voie biochimique du metabolisme</subject><ispartof>Plant physiology (Bethesda), 1995-06, Vol.108 (2), p.633-639</ispartof><rights>Copyright 1995 American Society of Plant Physiologists</rights><rights>1995 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/4276587$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/4276587$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,778,782,801,27907,27908,58000,58233</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=3614305$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Silverman, Paul</creatorcontrib><creatorcontrib>Seskar, Mirjana</creatorcontrib><creatorcontrib>Dwight Kanter</creatorcontrib><creatorcontrib>Schweizer, Patrick</creatorcontrib><creatorcontrib>Métraux, Jean-Pierre</creatorcontrib><creatorcontrib>Raskin, Ilya</creatorcontrib><creatorcontrib>Rutgers University, New Brunswick, NJ</creatorcontrib><title>Salicylic acid in rice. Biosynthesis, conjugation, and possible role</title><title>Plant physiology (Bethesda)</title><description>Salicylic acid (SA) is a natural inducer of disease resistance in some dicotyledonous plants. Rice seedlings (Oryza sativa L.) had the highest levels of SA among all plants tested for SA content (between 0.01 and 37.19 microgram/g fresh weight). The second leaf of rice seedlings had slightly lower SA levels than any younger leaves. To investigate the role of SA in rice disease resistance, we examined the levels of SA in rice (cv M-201) after inoculation with bacterial and fungal pathogens. SA levels did not increase after inoculation with either the avirulent pathogen Pseudomonas syringae D20 or with the rice pathogens Magnaporthe grisea, the causal agent of rice blast, and Rhizoctonia solani, the causal agent of sheath blight. However leaf SA levels in 28 rice varieties showed a correlation with generalized blast resistance, indicating that SA may play a role as a constitutive defense compound. Biosynthesis and metabolism of SA in rice was studied and compared to that of tobacco. Rice shoots converted [14C]cinnamic acid to SA and the lignin precursors p-coumaric and ferulic acids, whereas [14C]benzoic acid was readily converted to SA. The data suggest that in rice, as in tobacco, SA is synthesized from cinnamic acid via benzoic acid. In rice shoots, SA is largely present as a free acid; however, exogenously supplied SA was converted to beta-O-D-glucosylSA by an SA-inducible glucosyltransferase (SA-GTase). A 7-fold induction of SA-GTase activity was observed after 6 h of feeding 1 mM SA. Both rice roots and shoots showed similar patterns of SA-GTase induction by SA, with maximal induction after feeding with 1 mM SA.</description><subject>acide benzoique</subject><subject>acide cinnamique</subject><subject>acide salicylique</subject><subject>acido benzoico</subject><subject>acido cinamico</subject><subject>acido salicilico</subject><subject>actividad enzimatica</subject><subject>activite enzymatique</subject><subject>agent pathogene</subject><subject>analisis cuantitativo</subject><subject>analyse quantitative</subject><subject>benzoic acid</subject><subject>biochemical pathways</subject><subject>Biochemistry and Enzymology</subject><subject>Biological and medical sciences</subject><subject>biosintesis</subject><subject>biosynthese</subject><subject>Biosynthesis</subject><subject>Blasts</subject><subject>chemical composition</subject><subject>Chemical constitution</subject><subject>cinnamic acid</subject><subject>composicion quimica</subject><subject>composition chimique</subject><subject>disease resistance</subject><subject>enfermedades fungosas</subject><subject>enzymic activity</subject><subject>feuille</subject><subject>fitoalexina</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>fungal diseases</subject><subject>Generalities. Disease free stocks</subject><subject>hojas</subject><subject>Hydroxybenzoic acids</subject><subject>Inoculation</subject><subject>Leaves</subject><subject>ligninas</subject><subject>lignine</subject><subject>lignins</subject><subject>magnaporthe</subject><subject>maladie fongique</subject><subject>metabolism</subject><subject>metabolisme</subject><subject>metabolismo</subject><subject>nicotiana tabacum</subject><subject>organismos patogenos</subject><subject>oryza sativa</subject><subject>pathogenicity</subject><subject>Pathogens</subject><subject>patogenicidad</subject><subject>phytoalexine</subject><subject>phytoalexins</subject><subject>Phytopathology. Animal pests. Plant and forest protection</subject><subject>Plant physiology and development</subject><subject>Plants</subject><subject>plantulas</subject><subject>plantule</subject><subject>pouvoir pathogene</subject><subject>pseudomonas syringae</subject><subject>quantitative analysis</subject><subject>racine</subject><subject>raices</subject><subject>resistance aux maladies</subject><subject>resistencia a la enfermedad</subject><subject>rhizoctonia solani</subject><subject>Rice</subject><subject>roots</subject><subject>salicylic acids</subject><subject>Seedlings</subject><subject>stems</subject><subject>Systemic acquired resistance</subject><subject>tallo</subject><subject>tige</subject><subject>transferasas</subject><subject>transferase</subject><subject>transferases</subject><subject>variedades</subject><subject>variete</subject><subject>varieties</subject><subject>via bioquimica del metabolismo</subject><subject>voie biochimique du metabolisme</subject><issn>0032-0889</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><recordid>eNo9js1LxDAUxIMoWFdvHkVy8LitL19NetT1ExY8rHtekrRZU2pTknrY_97AiofhveE3DIPQNYGKEOD301QRUBWtasZOUEEEoyUVXJ2iAiD_oFRzji5S6gGAMMIL9LTRg7eHLKytb7EfcfS2q_CjD-kwzl9d8mmJbRj7n72efRiXWI8tnkJK3gwdjmHoLtGZ00Pqrv7uAm1fnj9Xb-X64_V99bAuHaX1nKcYIq21bSckVaJx2lGXvbRcOSmF0dKaVnFlauZY0zqlAIwwRjguhWrZAt0deyedrB5c1KP1aTdF_63jYcdqwhmIHLs5xvo0h_iPOZW1UDLj2yN2Ouz0PuaG7YY0jQTgkjfAfgG821-3</recordid><startdate>19950601</startdate><enddate>19950601</enddate><creator>Silverman, Paul</creator><creator>Seskar, Mirjana</creator><creator>Dwight Kanter</creator><creator>Schweizer, Patrick</creator><creator>Métraux, Jean-Pierre</creator><creator>Raskin, Ilya</creator><general>American Society of Plant Physiologists</general><scope>FBQ</scope><scope>IQODW</scope></search><sort><creationdate>19950601</creationdate><title>Salicylic acid in rice. Biosynthesis, conjugation, and possible role</title><author>Silverman, Paul ; Seskar, Mirjana ; Dwight Kanter ; Schweizer, Patrick ; Métraux, Jean-Pierre ; Raskin, Ilya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-f226t-25b17cccde572859faf2fccc7c48f775ba7cbd848b63f39df8800b5bb5f4758d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>acide benzoique</topic><topic>acide cinnamique</topic><topic>acide salicylique</topic><topic>acido benzoico</topic><topic>acido cinamico</topic><topic>acido salicilico</topic><topic>actividad enzimatica</topic><topic>activite enzymatique</topic><topic>agent pathogene</topic><topic>analisis cuantitativo</topic><topic>analyse quantitative</topic><topic>benzoic acid</topic><topic>biochemical pathways</topic><topic>Biochemistry and Enzymology</topic><topic>Biological and medical sciences</topic><topic>biosintesis</topic><topic>biosynthese</topic><topic>Biosynthesis</topic><topic>Blasts</topic><topic>chemical composition</topic><topic>Chemical constitution</topic><topic>cinnamic acid</topic><topic>composicion quimica</topic><topic>composition chimique</topic><topic>disease resistance</topic><topic>enfermedades fungosas</topic><topic>enzymic activity</topic><topic>feuille</topic><topic>fitoalexina</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>fungal diseases</topic><topic>Generalities. Disease free stocks</topic><topic>hojas</topic><topic>Hydroxybenzoic acids</topic><topic>Inoculation</topic><topic>Leaves</topic><topic>ligninas</topic><topic>lignine</topic><topic>lignins</topic><topic>magnaporthe</topic><topic>maladie fongique</topic><topic>metabolism</topic><topic>metabolisme</topic><topic>metabolismo</topic><topic>nicotiana tabacum</topic><topic>organismos patogenos</topic><topic>oryza sativa</topic><topic>pathogenicity</topic><topic>Pathogens</topic><topic>patogenicidad</topic><topic>phytoalexine</topic><topic>phytoalexins</topic><topic>Phytopathology. Animal pests. Plant and forest protection</topic><topic>Plant physiology and development</topic><topic>Plants</topic><topic>plantulas</topic><topic>plantule</topic><topic>pouvoir pathogene</topic><topic>pseudomonas syringae</topic><topic>quantitative analysis</topic><topic>racine</topic><topic>raices</topic><topic>resistance aux maladies</topic><topic>resistencia a la enfermedad</topic><topic>rhizoctonia solani</topic><topic>Rice</topic><topic>roots</topic><topic>salicylic acids</topic><topic>Seedlings</topic><topic>stems</topic><topic>Systemic acquired resistance</topic><topic>tallo</topic><topic>tige</topic><topic>transferasas</topic><topic>transferase</topic><topic>transferases</topic><topic>variedades</topic><topic>variete</topic><topic>varieties</topic><topic>via bioquimica del metabolismo</topic><topic>voie biochimique du metabolisme</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Silverman, Paul</creatorcontrib><creatorcontrib>Seskar, Mirjana</creatorcontrib><creatorcontrib>Dwight Kanter</creatorcontrib><creatorcontrib>Schweizer, Patrick</creatorcontrib><creatorcontrib>Métraux, Jean-Pierre</creatorcontrib><creatorcontrib>Raskin, Ilya</creatorcontrib><creatorcontrib>Rutgers University, New Brunswick, NJ</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Silverman, Paul</au><au>Seskar, Mirjana</au><au>Dwight Kanter</au><au>Schweizer, Patrick</au><au>Métraux, Jean-Pierre</au><au>Raskin, Ilya</au><aucorp>Rutgers University, New Brunswick, NJ</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Salicylic acid in rice. Biosynthesis, conjugation, and possible role</atitle><jtitle>Plant physiology (Bethesda)</jtitle><date>1995-06-01</date><risdate>1995</risdate><volume>108</volume><issue>2</issue><spage>633</spage><epage>639</epage><pages>633-639</pages><issn>0032-0889</issn><eissn>1532-2548</eissn><coden>PPHYA5</coden><abstract>Salicylic acid (SA) is a natural inducer of disease resistance in some dicotyledonous plants. Rice seedlings (Oryza sativa L.) had the highest levels of SA among all plants tested for SA content (between 0.01 and 37.19 microgram/g fresh weight). The second leaf of rice seedlings had slightly lower SA levels than any younger leaves. To investigate the role of SA in rice disease resistance, we examined the levels of SA in rice (cv M-201) after inoculation with bacterial and fungal pathogens. SA levels did not increase after inoculation with either the avirulent pathogen Pseudomonas syringae D20 or with the rice pathogens Magnaporthe grisea, the causal agent of rice blast, and Rhizoctonia solani, the causal agent of sheath blight. However leaf SA levels in 28 rice varieties showed a correlation with generalized blast resistance, indicating that SA may play a role as a constitutive defense compound. Biosynthesis and metabolism of SA in rice was studied and compared to that of tobacco. Rice shoots converted [14C]cinnamic acid to SA and the lignin precursors p-coumaric and ferulic acids, whereas [14C]benzoic acid was readily converted to SA. The data suggest that in rice, as in tobacco, SA is synthesized from cinnamic acid via benzoic acid. In rice shoots, SA is largely present as a free acid; however, exogenously supplied SA was converted to beta-O-D-glucosylSA by an SA-inducible glucosyltransferase (SA-GTase). A 7-fold induction of SA-GTase activity was observed after 6 h of feeding 1 mM SA. Both rice roots and shoots showed similar patterns of SA-GTase induction by SA, with maximal induction after feeding with 1 mM SA.</abstract><cop>Rockville, MD</cop><pub>American Society of Plant Physiologists</pub><doi>10.1104/pp.108.2.633</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-0889 |
ispartof | Plant physiology (Bethesda), 1995-06, Vol.108 (2), p.633-639 |
issn | 0032-0889 1532-2548 |
language | eng |
recordid | cdi_pascalfrancis_primary_3614305 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Jstor Complete Legacy; Alma/SFX Local Collection |
subjects | acide benzoique acide cinnamique acide salicylique acido benzoico acido cinamico acido salicilico actividad enzimatica activite enzymatique agent pathogene analisis cuantitativo analyse quantitative benzoic acid biochemical pathways Biochemistry and Enzymology Biological and medical sciences biosintesis biosynthese Biosynthesis Blasts chemical composition Chemical constitution cinnamic acid composicion quimica composition chimique disease resistance enfermedades fungosas enzymic activity feuille fitoalexina Fundamental and applied biological sciences. Psychology fungal diseases Generalities. Disease free stocks hojas Hydroxybenzoic acids Inoculation Leaves ligninas lignine lignins magnaporthe maladie fongique metabolism metabolisme metabolismo nicotiana tabacum organismos patogenos oryza sativa pathogenicity Pathogens patogenicidad phytoalexine phytoalexins Phytopathology. Animal pests. Plant and forest protection Plant physiology and development Plants plantulas plantule pouvoir pathogene pseudomonas syringae quantitative analysis racine raices resistance aux maladies resistencia a la enfermedad rhizoctonia solani Rice roots salicylic acids Seedlings stems Systemic acquired resistance tallo tige transferasas transferase transferases variedades variete varieties via bioquimica del metabolismo voie biochimique du metabolisme |
title | Salicylic acid in rice. Biosynthesis, conjugation, and possible role |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T07%3A28%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Salicylic%20acid%20in%20rice.%20Biosynthesis,%20conjugation,%20and%20possible%20role&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Silverman,%20Paul&rft.aucorp=Rutgers%20University,%20New%20Brunswick,%20NJ&rft.date=1995-06-01&rft.volume=108&rft.issue=2&rft.spage=633&rft.epage=639&rft.pages=633-639&rft.issn=0032-0889&rft.eissn=1532-2548&rft.coden=PPHYA5&rft_id=info:doi/10.1104/pp.108.2.633&rft_dat=%3Cjstor_pasca%3E4276587%3C/jstor_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=4276587&rfr_iscdi=true |