Computations in the neighbourhood of algebraic singularities

It is known that finite precision versus exact computation is a crucial issue only when the computation takes place in the neighbourhood of a singularity. In such a situation, it is essential to know the distance to singularity. Many attention has been dedicated to the relationship between the dista...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerical functional analysis and optimization 1995-01, Vol.16 (3-4), p.287-302
Hauptverfasser: Chaitin-Chatelin, Françoise, Frayssé, Valérie, Braconnier, Thierry
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 302
container_issue 3-4
container_start_page 287
container_title Numerical functional analysis and optimization
container_volume 16
creator Chaitin-Chatelin, Françoise
Frayssé, Valérie
Braconnier, Thierry
description It is known that finite precision versus exact computation is a crucial issue only when the computation takes place in the neighbourhood of a singularity. In such a situation, it is essential to know the distance to singularity. Many attention has been dedicated to the relationship between the distance to singularity δ and the condition number K of the problem under study. The well-known Turing theorem states that, for a linear system Ax = b the distance to singularity, in a normwise measure, is the reciprocal of the normwise condition number ||A −1 |||A|| In this Paper, we examine the possibility of extending this theorem for nonlinear problems in the neighbourhood of algebraic singularities. After reviewing the literature on that topic ([Demmel 1987, 1990], [Shub and Smale 1992]), we propose and check on the computer a conjecture which makes more explicit Demmel's bounds on the distance to singularity.
doi_str_mv 10.1080/01630569508816619
format Article
fullrecord <record><control><sourceid>pascalfrancis_infor</sourceid><recordid>TN_cdi_pascalfrancis_primary_3597464</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3597464</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-38eff0d3d00c3c0f8a38b80a0ac8178200f85d86837ececaa532fc39e7b897863</originalsourceid><addsrcrecordid>eNp1j01Lw0AQhhdRsFZ_gLccvEZnM81mAr1I8QsKXvQcJpvdZCXNlt0U6b83pepFPA3MPM_MvEJcS7iVQHAHUiHkqsyBSColyxMxkzlmabZQxamYHebpBOC5uIjxAwAwK2kmliu_2e5GHp0fYuKGZOxMMhjXdrXfhc77JvE24b41dWCnk-iGdtdzcKMz8VKcWe6jufquc_H--PC2ek7Xr08vq_t1qjHLxxTJWAsNNgAaNVhipJqAgTXJgjKYWnlDirAw2mjm6W-rsTRFTWVBCudCHvfq4GMMxlbb4DYc9pWE6hC_-hN_cm6Ozpaj5t4GHrSLvyLmZbFQiwlbHjE3WB82_OlD31Qj73sffhz8_8oX2aZtCg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Computations in the neighbourhood of algebraic singularities</title><source>Taylor &amp; Francis</source><creator>Chaitin-Chatelin, Françoise ; Frayssé, Valérie ; Braconnier, Thierry</creator><creatorcontrib>Chaitin-Chatelin, Françoise ; Frayssé, Valérie ; Braconnier, Thierry</creatorcontrib><description>It is known that finite precision versus exact computation is a crucial issue only when the computation takes place in the neighbourhood of a singularity. In such a situation, it is essential to know the distance to singularity. Many attention has been dedicated to the relationship between the distance to singularity δ and the condition number K of the problem under study. The well-known Turing theorem states that, for a linear system Ax = b the distance to singularity, in a normwise measure, is the reciprocal of the normwise condition number ||A −1 |||A|| In this Paper, we examine the possibility of extending this theorem for nonlinear problems in the neighbourhood of algebraic singularities. After reviewing the literature on that topic ([Demmel 1987, 1990], [Shub and Smale 1992]), we propose and check on the computer a conjecture which makes more explicit Demmel's bounds on the distance to singularity.</description><identifier>ISSN: 0163-0563</identifier><identifier>EISSN: 1532-2467</identifier><identifier>DOI: 10.1080/01630569508816619</identifier><identifier>CODEN: NFAODL</identifier><language>eng</language><publisher>Philadelphia, PA: Marcel Dekker, Inc</publisher><subject>Applied sciences ; Automata. Abstract machines. Turing machines ; Computer science; control theory; systems ; Exact sciences and technology ; Mathematics ; Methods of scientific computing (including symbolic computation, algebraic computation) ; Nonlinear algebraic and transcendental equations ; Numerical analysis ; Numerical analysis. Scientific computation ; Sciences and techniques of general use ; Theoretical computing</subject><ispartof>Numerical functional analysis and optimization, 1995-01, Vol.16 (3-4), p.287-302</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 1995</rights><rights>1995 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-38eff0d3d00c3c0f8a38b80a0ac8178200f85d86837ececaa532fc39e7b897863</citedby><cites>FETCH-LOGICAL-c325t-38eff0d3d00c3c0f8a38b80a0ac8178200f85d86837ececaa532fc39e7b897863</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/01630569508816619$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/01630569508816619$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,776,780,4010,27900,27901,27902,59620,60409</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3597464$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Chaitin-Chatelin, Françoise</creatorcontrib><creatorcontrib>Frayssé, Valérie</creatorcontrib><creatorcontrib>Braconnier, Thierry</creatorcontrib><title>Computations in the neighbourhood of algebraic singularities</title><title>Numerical functional analysis and optimization</title><description>It is known that finite precision versus exact computation is a crucial issue only when the computation takes place in the neighbourhood of a singularity. In such a situation, it is essential to know the distance to singularity. Many attention has been dedicated to the relationship between the distance to singularity δ and the condition number K of the problem under study. The well-known Turing theorem states that, for a linear system Ax = b the distance to singularity, in a normwise measure, is the reciprocal of the normwise condition number ||A −1 |||A|| In this Paper, we examine the possibility of extending this theorem for nonlinear problems in the neighbourhood of algebraic singularities. After reviewing the literature on that topic ([Demmel 1987, 1990], [Shub and Smale 1992]), we propose and check on the computer a conjecture which makes more explicit Demmel's bounds on the distance to singularity.</description><subject>Applied sciences</subject><subject>Automata. Abstract machines. Turing machines</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Mathematics</subject><subject>Methods of scientific computing (including symbolic computation, algebraic computation)</subject><subject>Nonlinear algebraic and transcendental equations</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Sciences and techniques of general use</subject><subject>Theoretical computing</subject><issn>0163-0563</issn><issn>1532-2467</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><recordid>eNp1j01Lw0AQhhdRsFZ_gLccvEZnM81mAr1I8QsKXvQcJpvdZCXNlt0U6b83pepFPA3MPM_MvEJcS7iVQHAHUiHkqsyBSColyxMxkzlmabZQxamYHebpBOC5uIjxAwAwK2kmliu_2e5GHp0fYuKGZOxMMhjXdrXfhc77JvE24b41dWCnk-iGdtdzcKMz8VKcWe6jufquc_H--PC2ek7Xr08vq_t1qjHLxxTJWAsNNgAaNVhipJqAgTXJgjKYWnlDirAw2mjm6W-rsTRFTWVBCudCHvfq4GMMxlbb4DYc9pWE6hC_-hN_cm6Ozpaj5t4GHrSLvyLmZbFQiwlbHjE3WB82_OlD31Qj73sffhz8_8oX2aZtCg</recordid><startdate>19950101</startdate><enddate>19950101</enddate><creator>Chaitin-Chatelin, Françoise</creator><creator>Frayssé, Valérie</creator><creator>Braconnier, Thierry</creator><general>Marcel Dekker, Inc</general><general>Taylor &amp; Francis</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19950101</creationdate><title>Computations in the neighbourhood of algebraic singularities</title><author>Chaitin-Chatelin, Françoise ; Frayssé, Valérie ; Braconnier, Thierry</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-38eff0d3d00c3c0f8a38b80a0ac8178200f85d86837ececaa532fc39e7b897863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Applied sciences</topic><topic>Automata. Abstract machines. Turing machines</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Mathematics</topic><topic>Methods of scientific computing (including symbolic computation, algebraic computation)</topic><topic>Nonlinear algebraic and transcendental equations</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Sciences and techniques of general use</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chaitin-Chatelin, Françoise</creatorcontrib><creatorcontrib>Frayssé, Valérie</creatorcontrib><creatorcontrib>Braconnier, Thierry</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Numerical functional analysis and optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chaitin-Chatelin, Françoise</au><au>Frayssé, Valérie</au><au>Braconnier, Thierry</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computations in the neighbourhood of algebraic singularities</atitle><jtitle>Numerical functional analysis and optimization</jtitle><date>1995-01-01</date><risdate>1995</risdate><volume>16</volume><issue>3-4</issue><spage>287</spage><epage>302</epage><pages>287-302</pages><issn>0163-0563</issn><eissn>1532-2467</eissn><coden>NFAODL</coden><abstract>It is known that finite precision versus exact computation is a crucial issue only when the computation takes place in the neighbourhood of a singularity. In such a situation, it is essential to know the distance to singularity. Many attention has been dedicated to the relationship between the distance to singularity δ and the condition number K of the problem under study. The well-known Turing theorem states that, for a linear system Ax = b the distance to singularity, in a normwise measure, is the reciprocal of the normwise condition number ||A −1 |||A|| In this Paper, we examine the possibility of extending this theorem for nonlinear problems in the neighbourhood of algebraic singularities. After reviewing the literature on that topic ([Demmel 1987, 1990], [Shub and Smale 1992]), we propose and check on the computer a conjecture which makes more explicit Demmel's bounds on the distance to singularity.</abstract><cop>Philadelphia, PA</cop><pub>Marcel Dekker, Inc</pub><doi>10.1080/01630569508816619</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0163-0563
ispartof Numerical functional analysis and optimization, 1995-01, Vol.16 (3-4), p.287-302
issn 0163-0563
1532-2467
language eng
recordid cdi_pascalfrancis_primary_3597464
source Taylor & Francis
subjects Applied sciences
Automata. Abstract machines. Turing machines
Computer science
control theory
systems
Exact sciences and technology
Mathematics
Methods of scientific computing (including symbolic computation, algebraic computation)
Nonlinear algebraic and transcendental equations
Numerical analysis
Numerical analysis. Scientific computation
Sciences and techniques of general use
Theoretical computing
title Computations in the neighbourhood of algebraic singularities
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T14%3A01%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computations%20in%20the%20neighbourhood%20of%20algebraic%20singularities&rft.jtitle=Numerical%20functional%20analysis%20and%20optimization&rft.au=Chaitin-Chatelin,%20Fran%C3%A7oise&rft.date=1995-01-01&rft.volume=16&rft.issue=3-4&rft.spage=287&rft.epage=302&rft.pages=287-302&rft.issn=0163-0563&rft.eissn=1532-2467&rft.coden=NFAODL&rft_id=info:doi/10.1080/01630569508816619&rft_dat=%3Cpascalfrancis_infor%3E3597464%3C/pascalfrancis_infor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true