Order-Restricted Inferences in Linear Regression
Regression analysis constitutes a large portion of the statistical repertoire in applications. In cases where such analysis is used for exploratory purposes with no previous knowledge of the structure, one would not wish to impose any constraints on the problem. But in many applications we are inter...
Gespeichert in:
Veröffentlicht in: | Journal of the American Statistical Association 1995-06, Vol.90 (430), p.717-728 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 728 |
---|---|
container_issue | 430 |
container_start_page | 717 |
container_title | Journal of the American Statistical Association |
container_volume | 90 |
creator | Mukerjee, Hari Tu, Renjin |
description | Regression analysis constitutes a large portion of the statistical repertoire in applications. In cases where such analysis is used for exploratory purposes with no previous knowledge of the structure, one would not wish to impose any constraints on the problem. But in many applications we are interested in curve fitting with a simple parametric model to describe the structure of a system with some prior knowledge about the structure. An important example of this occurs when the experimenter has a strong belief that the regression function changes monotonically with some or all of the predictor variables in a region of interest. The analyses needed for statistical inferences under such constraints are nonstandard. Considering the present body of knowledge developed for unconstrained regression, it will be an enormous task to derive the analogs of even a small fraction of this for the restricted case. In this article we initiate the study with simple linear regression on a single variable. The estimators of the regression parameters may be intuitively obvious in this case, but, as discussed, very little else is. |
doi_str_mv | 10.1080/01621459.1995.10476565 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_3580195</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2291084</jstor_id><sourcerecordid>2291084</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-bbb22a6b17cf6df9762d9b556c1f99cc91be6d90f75ec20a40a15187d3a95b453</originalsourceid><addsrcrecordid>eNqFkE9LAzEQxYMoWKtfQYqIt61JdpNsjqX4p1AoFAVvIZtNZMs2qZMt0m9vlrZSvDiXgeE3b948hG4JHhNc4kdMOCUFk2MiJUujQnDG2RkaEJaLjIri4xwNeijrqUt0FeMKpxJlOUB4AbWFbGljB43pbD2aeWfBemPjqPGjeeOthtHSfoKNsQn-Gl043UZ7c-hD9P789DZ9zeaLl9l0Ms9MXhRdVlUVpZpXRBjHaycFp7WsGOOGOCmNkaSyvJbYCWYNxbrAmjBSijrXklUFy4foYa-7gfC1TfbUuonGtq32NmyjyktJ8_RrAu_-gKuwBZ-8qfR7SYkUOEF8DxkIMYJ1agPNWsNOEaz6FNUxRdWnqI4ppsX7g7qORrcOtDdN_N3OWYmJPMFWsQtwKp5MCkWpTEeKhE32WONdgLX-DtDWqtO7NsBROv_H0Q_KuY_4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>274821970</pqid></control><display><type>article</type><title>Order-Restricted Inferences in Linear Regression</title><source>JSTOR Mathematics & Statistics</source><source>Jstor Complete Legacy</source><creator>Mukerjee, Hari ; Tu, Renjin</creator><creatorcontrib>Mukerjee, Hari ; Tu, Renjin</creatorcontrib><description>Regression analysis constitutes a large portion of the statistical repertoire in applications. In cases where such analysis is used for exploratory purposes with no previous knowledge of the structure, one would not wish to impose any constraints on the problem. But in many applications we are interested in curve fitting with a simple parametric model to describe the structure of a system with some prior knowledge about the structure. An important example of this occurs when the experimenter has a strong belief that the regression function changes monotonically with some or all of the predictor variables in a region of interest. The analyses needed for statistical inferences under such constraints are nonstandard. Considering the present body of knowledge developed for unconstrained regression, it will be an enormous task to derive the analogs of even a small fraction of this for the restricted case. In this article we initiate the study with simple linear regression on a single variable. The estimators of the regression parameters may be intuitively obvious in this case, but, as discussed, very little else is.</description><identifier>ISSN: 0162-1459</identifier><identifier>EISSN: 1537-274X</identifier><identifier>DOI: 10.1080/01621459.1995.10476565</identifier><identifier>CODEN: JSTNAL</identifier><language>eng</language><publisher>Alexandria, VA: Taylor & Francis Group</publisher><subject>Confidence interval ; Estimators ; Exact sciences and technology ; Hypothesis testing ; Inference ; Lack-of-fits test ; Least squares ; Linear inference, regression ; Linear regression ; Mathematical vectors ; Mathematics ; Maximum likelihood estimation ; Prediction interval ; Probabilities ; Probability and statistics ; Regression analysis ; Sciences and techniques of general use ; Statistical methods ; Statistics ; Theory and Methods ; Vertices</subject><ispartof>Journal of the American Statistical Association, 1995-06, Vol.90 (430), p.717-728</ispartof><rights>Copyright Taylor & Francis Group, LLC 1995</rights><rights>Copyright 1995 American Statistical Association</rights><rights>1995 INIST-CNRS</rights><rights>Copyright American Statistical Association Jun 1995</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-bbb22a6b17cf6df9762d9b556c1f99cc91be6d90f75ec20a40a15187d3a95b453</citedby><cites>FETCH-LOGICAL-c344t-bbb22a6b17cf6df9762d9b556c1f99cc91be6d90f75ec20a40a15187d3a95b453</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2291084$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2291084$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,777,781,800,829,27905,27906,57998,58002,58231,58235</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=3580195$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Mukerjee, Hari</creatorcontrib><creatorcontrib>Tu, Renjin</creatorcontrib><title>Order-Restricted Inferences in Linear Regression</title><title>Journal of the American Statistical Association</title><description>Regression analysis constitutes a large portion of the statistical repertoire in applications. In cases where such analysis is used for exploratory purposes with no previous knowledge of the structure, one would not wish to impose any constraints on the problem. But in many applications we are interested in curve fitting with a simple parametric model to describe the structure of a system with some prior knowledge about the structure. An important example of this occurs when the experimenter has a strong belief that the regression function changes monotonically with some or all of the predictor variables in a region of interest. The analyses needed for statistical inferences under such constraints are nonstandard. Considering the present body of knowledge developed for unconstrained regression, it will be an enormous task to derive the analogs of even a small fraction of this for the restricted case. In this article we initiate the study with simple linear regression on a single variable. The estimators of the regression parameters may be intuitively obvious in this case, but, as discussed, very little else is.</description><subject>Confidence interval</subject><subject>Estimators</subject><subject>Exact sciences and technology</subject><subject>Hypothesis testing</subject><subject>Inference</subject><subject>Lack-of-fits test</subject><subject>Least squares</subject><subject>Linear inference, regression</subject><subject>Linear regression</subject><subject>Mathematical vectors</subject><subject>Mathematics</subject><subject>Maximum likelihood estimation</subject><subject>Prediction interval</subject><subject>Probabilities</subject><subject>Probability and statistics</subject><subject>Regression analysis</subject><subject>Sciences and techniques of general use</subject><subject>Statistical methods</subject><subject>Statistics</subject><subject>Theory and Methods</subject><subject>Vertices</subject><issn>0162-1459</issn><issn>1537-274X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkE9LAzEQxYMoWKtfQYqIt61JdpNsjqX4p1AoFAVvIZtNZMs2qZMt0m9vlrZSvDiXgeE3b948hG4JHhNc4kdMOCUFk2MiJUujQnDG2RkaEJaLjIri4xwNeijrqUt0FeMKpxJlOUB4AbWFbGljB43pbD2aeWfBemPjqPGjeeOthtHSfoKNsQn-Gl043UZ7c-hD9P789DZ9zeaLl9l0Ms9MXhRdVlUVpZpXRBjHaycFp7WsGOOGOCmNkaSyvJbYCWYNxbrAmjBSijrXklUFy4foYa-7gfC1TfbUuonGtq32NmyjyktJ8_RrAu_-gKuwBZ-8qfR7SYkUOEF8DxkIMYJ1agPNWsNOEaz6FNUxRdWnqI4ppsX7g7qORrcOtDdN_N3OWYmJPMFWsQtwKp5MCkWpTEeKhE32WONdgLX-DtDWqtO7NsBROv_H0Q_KuY_4</recordid><startdate>19950601</startdate><enddate>19950601</enddate><creator>Mukerjee, Hari</creator><creator>Tu, Renjin</creator><general>Taylor & Francis Group</general><general>American Statistical Association</general><general>Taylor & Francis Ltd</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8BJ</scope><scope>8C1</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JBE</scope><scope>K60</scope><scope>K6~</scope><scope>K9-</scope><scope>K9.</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M0R</scope><scope>M0S</scope><scope>M0T</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PADUT</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>19950601</creationdate><title>Order-Restricted Inferences in Linear Regression</title><author>Mukerjee, Hari ; Tu, Renjin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-bbb22a6b17cf6df9762d9b556c1f99cc91be6d90f75ec20a40a15187d3a95b453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Confidence interval</topic><topic>Estimators</topic><topic>Exact sciences and technology</topic><topic>Hypothesis testing</topic><topic>Inference</topic><topic>Lack-of-fits test</topic><topic>Least squares</topic><topic>Linear inference, regression</topic><topic>Linear regression</topic><topic>Mathematical vectors</topic><topic>Mathematics</topic><topic>Maximum likelihood estimation</topic><topic>Prediction interval</topic><topic>Probabilities</topic><topic>Probability and statistics</topic><topic>Regression analysis</topic><topic>Sciences and techniques of general use</topic><topic>Statistical methods</topic><topic>Statistics</topic><topic>Theory and Methods</topic><topic>Vertices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mukerjee, Hari</creatorcontrib><creatorcontrib>Tu, Renjin</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>International Bibliography of the Social Sciences</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Consumer Health Database (Alumni Edition)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Consumer Health Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Healthcare Administration Database</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Research Library China</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of the American Statistical Association</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mukerjee, Hari</au><au>Tu, Renjin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Order-Restricted Inferences in Linear Regression</atitle><jtitle>Journal of the American Statistical Association</jtitle><date>1995-06-01</date><risdate>1995</risdate><volume>90</volume><issue>430</issue><spage>717</spage><epage>728</epage><pages>717-728</pages><issn>0162-1459</issn><eissn>1537-274X</eissn><coden>JSTNAL</coden><abstract>Regression analysis constitutes a large portion of the statistical repertoire in applications. In cases where such analysis is used for exploratory purposes with no previous knowledge of the structure, one would not wish to impose any constraints on the problem. But in many applications we are interested in curve fitting with a simple parametric model to describe the structure of a system with some prior knowledge about the structure. An important example of this occurs when the experimenter has a strong belief that the regression function changes monotonically with some or all of the predictor variables in a region of interest. The analyses needed for statistical inferences under such constraints are nonstandard. Considering the present body of knowledge developed for unconstrained regression, it will be an enormous task to derive the analogs of even a small fraction of this for the restricted case. In this article we initiate the study with simple linear regression on a single variable. The estimators of the regression parameters may be intuitively obvious in this case, but, as discussed, very little else is.</abstract><cop>Alexandria, VA</cop><pub>Taylor & Francis Group</pub><doi>10.1080/01621459.1995.10476565</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0162-1459 |
ispartof | Journal of the American Statistical Association, 1995-06, Vol.90 (430), p.717-728 |
issn | 0162-1459 1537-274X |
language | eng |
recordid | cdi_pascalfrancis_primary_3580195 |
source | JSTOR Mathematics & Statistics; Jstor Complete Legacy |
subjects | Confidence interval Estimators Exact sciences and technology Hypothesis testing Inference Lack-of-fits test Least squares Linear inference, regression Linear regression Mathematical vectors Mathematics Maximum likelihood estimation Prediction interval Probabilities Probability and statistics Regression analysis Sciences and techniques of general use Statistical methods Statistics Theory and Methods Vertices |
title | Order-Restricted Inferences in Linear Regression |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T17%3A05%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Order-Restricted%20Inferences%20in%20Linear%20Regression&rft.jtitle=Journal%20of%20the%20American%20Statistical%20Association&rft.au=Mukerjee,%20Hari&rft.date=1995-06-01&rft.volume=90&rft.issue=430&rft.spage=717&rft.epage=728&rft.pages=717-728&rft.issn=0162-1459&rft.eissn=1537-274X&rft.coden=JSTNAL&rft_id=info:doi/10.1080/01621459.1995.10476565&rft_dat=%3Cjstor_pasca%3E2291084%3C/jstor_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=274821970&rft_id=info:pmid/&rft_jstor_id=2291084&rfr_iscdi=true |