Exact interpolation and iterative subdivision schemes

We examine the circumstances under which a discrete-time signal can be exactly interpolated given only every Mth sample. After pointing out the connection between designing an M-fold interpolator and the construction of an M-channel perfect reconstruction filter bank, we derive necessary and suffici...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 1995-06, Vol.43 (6), p.1348-1359
1. Verfasser: Herley, C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1359
container_issue 6
container_start_page 1348
container_title IEEE transactions on signal processing
container_volume 43
creator Herley, C.
description We examine the circumstances under which a discrete-time signal can be exactly interpolated given only every Mth sample. After pointing out the connection between designing an M-fold interpolator and the construction of an M-channel perfect reconstruction filter bank, we derive necessary and sufficient conditions on the signal under which exact interpolation is possible. Bandlimited signals are one obvious example, but numerous others exist. We examine these and show how the interpolators may be constructed. A main application is to iterative interpolation schemes, used for the efficient generation of smooth curves. We show that conventional bandlimited interpolators are not suitable in this context. A better criterion is to use interpolators that are exact for polynomial functions. We demonstrate that these interpolators converge when iterated, and show how these may be designed for any polynomial degree N and any interpolation factor M. This makes it possible to design interpolators for iterative schemes to make best use of the resolution available in a given display medium.< >
doi_str_mv 10.1109/78.388849
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_3571321</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>388849</ieee_id><sourcerecordid>28671020</sourcerecordid><originalsourceid>FETCH-LOGICAL-c306t-87dc998276a87ad72aa5aa899c6786c911ab7f12b649a356d0f8f4999988605b3</originalsourceid><addsrcrecordid>eNpFkEtLAzEUhYMoWKsLt65mIYKLqcnkdbOUUh9QcKPgLtzJZDAyjzqZFv33pkzRu7mP892zOIRcMrpgjJo7DQsOAMIckRkzguVUaHWcZip5LkG_n5KzGD8pZUIYNSNy9Y1uzEI3-mHTNziGvsuwq7KQDmnb-SxuyyrsQtwr0X341sdzclJjE_3Foc_J28PqdfmUr18en5f369xxqsYcdOWMgUIrBI2VLhAlIhjjlAblDGNY6poVpRIGuVQVraEWJhWAorLkc3Iz-W6G_mvr42jbEJ1vGux8v422AKUZLWgCbyfQDX2Mg6_tZggtDj-WUbsPxmqwUzCJvT6YYnTY1AN2LsS_By414wVL2NWEBe_9vzp5_ALmz2m4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28671020</pqid></control><display><type>article</type><title>Exact interpolation and iterative subdivision schemes</title><source>IEEE Electronic Library (IEL)</source><creator>Herley, C.</creator><creatorcontrib>Herley, C.</creatorcontrib><description>We examine the circumstances under which a discrete-time signal can be exactly interpolated given only every Mth sample. After pointing out the connection between designing an M-fold interpolator and the construction of an M-channel perfect reconstruction filter bank, we derive necessary and sufficient conditions on the signal under which exact interpolation is possible. Bandlimited signals are one obvious example, but numerous others exist. We examine these and show how the interpolators may be constructed. A main application is to iterative interpolation schemes, used for the efficient generation of smooth curves. We show that conventional bandlimited interpolators are not suitable in this context. A better criterion is to use interpolators that are exact for polynomial functions. We demonstrate that these interpolators converge when iterated, and show how these may be designed for any polynomial degree N and any interpolation factor M. This makes it possible to design interpolators for iterative schemes to make best use of the resolution available in a given display medium.&lt; &gt;</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/78.388849</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Displays ; Exact sciences and technology ; Filter bank ; Information, signal and communications theory ; Interpolation ; Mathematical methods ; Maximum likelihood detection ; Polynomials ; Shape ; Signal design ; Signal resolution ; Sufficient conditions ; Telecommunications and information theory</subject><ispartof>IEEE transactions on signal processing, 1995-06, Vol.43 (6), p.1348-1359</ispartof><rights>1995 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c306t-87dc998276a87ad72aa5aa899c6786c911ab7f12b649a356d0f8f4999988605b3</citedby><cites>FETCH-LOGICAL-c306t-87dc998276a87ad72aa5aa899c6786c911ab7f12b649a356d0f8f4999988605b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/388849$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/388849$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3571321$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Herley, C.</creatorcontrib><title>Exact interpolation and iterative subdivision schemes</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>We examine the circumstances under which a discrete-time signal can be exactly interpolated given only every Mth sample. After pointing out the connection between designing an M-fold interpolator and the construction of an M-channel perfect reconstruction filter bank, we derive necessary and sufficient conditions on the signal under which exact interpolation is possible. Bandlimited signals are one obvious example, but numerous others exist. We examine these and show how the interpolators may be constructed. A main application is to iterative interpolation schemes, used for the efficient generation of smooth curves. We show that conventional bandlimited interpolators are not suitable in this context. A better criterion is to use interpolators that are exact for polynomial functions. We demonstrate that these interpolators converge when iterated, and show how these may be designed for any polynomial degree N and any interpolation factor M. This makes it possible to design interpolators for iterative schemes to make best use of the resolution available in a given display medium.&lt; &gt;</description><subject>Applied sciences</subject><subject>Displays</subject><subject>Exact sciences and technology</subject><subject>Filter bank</subject><subject>Information, signal and communications theory</subject><subject>Interpolation</subject><subject>Mathematical methods</subject><subject>Maximum likelihood detection</subject><subject>Polynomials</subject><subject>Shape</subject><subject>Signal design</subject><subject>Signal resolution</subject><subject>Sufficient conditions</subject><subject>Telecommunications and information theory</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><recordid>eNpFkEtLAzEUhYMoWKsLt65mIYKLqcnkdbOUUh9QcKPgLtzJZDAyjzqZFv33pkzRu7mP892zOIRcMrpgjJo7DQsOAMIckRkzguVUaHWcZip5LkG_n5KzGD8pZUIYNSNy9Y1uzEI3-mHTNziGvsuwq7KQDmnb-SxuyyrsQtwr0X341sdzclJjE_3Foc_J28PqdfmUr18en5f369xxqsYcdOWMgUIrBI2VLhAlIhjjlAblDGNY6poVpRIGuVQVraEWJhWAorLkc3Iz-W6G_mvr42jbEJ1vGux8v422AKUZLWgCbyfQDX2Mg6_tZggtDj-WUbsPxmqwUzCJvT6YYnTY1AN2LsS_By414wVL2NWEBe_9vzp5_ALmz2m4</recordid><startdate>19950601</startdate><enddate>19950601</enddate><creator>Herley, C.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19950601</creationdate><title>Exact interpolation and iterative subdivision schemes</title><author>Herley, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c306t-87dc998276a87ad72aa5aa899c6786c911ab7f12b649a356d0f8f4999988605b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Applied sciences</topic><topic>Displays</topic><topic>Exact sciences and technology</topic><topic>Filter bank</topic><topic>Information, signal and communications theory</topic><topic>Interpolation</topic><topic>Mathematical methods</topic><topic>Maximum likelihood detection</topic><topic>Polynomials</topic><topic>Shape</topic><topic>Signal design</topic><topic>Signal resolution</topic><topic>Sufficient conditions</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Herley, C.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Herley, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exact interpolation and iterative subdivision schemes</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>1995-06-01</date><risdate>1995</risdate><volume>43</volume><issue>6</issue><spage>1348</spage><epage>1359</epage><pages>1348-1359</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>We examine the circumstances under which a discrete-time signal can be exactly interpolated given only every Mth sample. After pointing out the connection between designing an M-fold interpolator and the construction of an M-channel perfect reconstruction filter bank, we derive necessary and sufficient conditions on the signal under which exact interpolation is possible. Bandlimited signals are one obvious example, but numerous others exist. We examine these and show how the interpolators may be constructed. A main application is to iterative interpolation schemes, used for the efficient generation of smooth curves. We show that conventional bandlimited interpolators are not suitable in this context. A better criterion is to use interpolators that are exact for polynomial functions. We demonstrate that these interpolators converge when iterated, and show how these may be designed for any polynomial degree N and any interpolation factor M. This makes it possible to design interpolators for iterative schemes to make best use of the resolution available in a given display medium.&lt; &gt;</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/78.388849</doi><tpages>12</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1053-587X
ispartof IEEE transactions on signal processing, 1995-06, Vol.43 (6), p.1348-1359
issn 1053-587X
1941-0476
language eng
recordid cdi_pascalfrancis_primary_3571321
source IEEE Electronic Library (IEL)
subjects Applied sciences
Displays
Exact sciences and technology
Filter bank
Information, signal and communications theory
Interpolation
Mathematical methods
Maximum likelihood detection
Polynomials
Shape
Signal design
Signal resolution
Sufficient conditions
Telecommunications and information theory
title Exact interpolation and iterative subdivision schemes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T19%3A24%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exact%20interpolation%20and%20iterative%20subdivision%20schemes&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Herley,%20C.&rft.date=1995-06-01&rft.volume=43&rft.issue=6&rft.spage=1348&rft.epage=1359&rft.pages=1348-1359&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/78.388849&rft_dat=%3Cproquest_RIE%3E28671020%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28671020&rft_id=info:pmid/&rft_ieee_id=388849&rfr_iscdi=true