Petri net models of fuzzy neural networks

Artificial neural networks (ANN's) are highly parallel and distributed computational structures that can learn from experience and perform inferences. Petri nets, on the other hand, provide an effective modeling framework for distributed systems. The basic concepts of Petri net are utilized to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on systems, man, and cybernetics man, and cybernetics, 1995-06, Vol.25 (6), p.926-932
1. Verfasser: Ahson, S.I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 932
container_issue 6
container_start_page 926
container_title IEEE transactions on systems, man, and cybernetics
container_volume 25
creator Ahson, S.I.
description Artificial neural networks (ANN's) are highly parallel and distributed computational structures that can learn from experience and perform inferences. Petri nets, on the other hand, provide an effective modeling framework for distributed systems. The basic concepts of Petri net are utilized to develop ANN-like multilayered Petri net architectures of distributed intelligence having learning ability. A Petri net model of single neuron is presented. A two-layer Petri net model-neural Petri net (NPN)-that uses this neuron model as a building block is described. A new class of Petri nets called the fuzzy neural Petri net (FNPN) is defined. The FNPN can be used for representing a fuzzy knowledge base and for fuzzy reasoning. Some application examples for the two Petri net based models are given.< >
doi_str_mv 10.1109/21.384255
format Article
fullrecord <record><control><sourceid>pascalfrancis_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_3533488</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>384255</ieee_id><sourcerecordid>3533488</sourcerecordid><originalsourceid>FETCH-LOGICAL-c275t-7f58af68f9fbaf2c9c4d565d69409b729c09ecf59b6caba84fce0f8cec8be36d3</originalsourceid><addsrcrecordid>eNpFj81Lw0AQxRdRMFYPXj3l4KWH1P3O7lGKX1DQg57DZjID0bQpuynS_vWmRPT0mPd-8-Axdi34Qgju76RYKKelMScsk8K6QnruT1nGuXCF16U8ZxcpfY6n1t5kbP6GQ2zzDQ75um-wS3lPOe0Oh_3o7WLojtF3H7_SJTuj0CW8-tUZ-3h8eF8-F6vXp5fl_aoAWZqhKMm4QNaRpzqQBA-6MdY01mvu61J64B6BjK8thDo4TYCcHCC4GpVt1IzNp16IfUoRqdrGdh3ivhK8Om6spKimjSN7O7HbkCB0FMMG2vT3oIxS2rkRu5mwFhH_06njB-HlWT4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Petri net models of fuzzy neural networks</title><source>IEEE Electronic Library (IEL)</source><creator>Ahson, S.I.</creator><creatorcontrib>Ahson, S.I.</creatorcontrib><description>Artificial neural networks (ANN's) are highly parallel and distributed computational structures that can learn from experience and perform inferences. Petri nets, on the other hand, provide an effective modeling framework for distributed systems. The basic concepts of Petri net are utilized to develop ANN-like multilayered Petri net architectures of distributed intelligence having learning ability. A Petri net model of single neuron is presented. A two-layer Petri net model-neural Petri net (NPN)-that uses this neuron model as a building block is described. A new class of Petri nets called the fuzzy neural Petri net (FNPN) is defined. The FNPN can be used for representing a fuzzy knowledge base and for fuzzy reasoning. Some application examples for the two Petri net based models are given.&lt; &gt;</description><identifier>ISSN: 0018-9472</identifier><identifier>EISSN: 2168-2909</identifier><identifier>DOI: 10.1109/21.384255</identifier><identifier>CODEN: ISYMAW</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Artificial intelligence ; Artificial neural networks ; Computer architecture ; Computer networks ; Computer science; control theory; systems ; Concurrent computing ; Connectionism. Neural networks ; Distributed computing ; Exact sciences and technology ; Fuzzy neural networks ; Fuzzy reasoning ; High performance computing ; Neurons ; Petri nets</subject><ispartof>IEEE transactions on systems, man, and cybernetics, 1995-06, Vol.25 (6), p.926-932</ispartof><rights>1995 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c275t-7f58af68f9fbaf2c9c4d565d69409b729c09ecf59b6caba84fce0f8cec8be36d3</citedby><cites>FETCH-LOGICAL-c275t-7f58af68f9fbaf2c9c4d565d69409b729c09ecf59b6caba84fce0f8cec8be36d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/384255$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/384255$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3533488$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ahson, S.I.</creatorcontrib><title>Petri net models of fuzzy neural networks</title><title>IEEE transactions on systems, man, and cybernetics</title><addtitle>T-SMC</addtitle><description>Artificial neural networks (ANN's) are highly parallel and distributed computational structures that can learn from experience and perform inferences. Petri nets, on the other hand, provide an effective modeling framework for distributed systems. The basic concepts of Petri net are utilized to develop ANN-like multilayered Petri net architectures of distributed intelligence having learning ability. A Petri net model of single neuron is presented. A two-layer Petri net model-neural Petri net (NPN)-that uses this neuron model as a building block is described. A new class of Petri nets called the fuzzy neural Petri net (FNPN) is defined. The FNPN can be used for representing a fuzzy knowledge base and for fuzzy reasoning. Some application examples for the two Petri net based models are given.&lt; &gt;</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Computer architecture</subject><subject>Computer networks</subject><subject>Computer science; control theory; systems</subject><subject>Concurrent computing</subject><subject>Connectionism. Neural networks</subject><subject>Distributed computing</subject><subject>Exact sciences and technology</subject><subject>Fuzzy neural networks</subject><subject>Fuzzy reasoning</subject><subject>High performance computing</subject><subject>Neurons</subject><subject>Petri nets</subject><issn>0018-9472</issn><issn>2168-2909</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><recordid>eNpFj81Lw0AQxRdRMFYPXj3l4KWH1P3O7lGKX1DQg57DZjID0bQpuynS_vWmRPT0mPd-8-Axdi34Qgju76RYKKelMScsk8K6QnruT1nGuXCF16U8ZxcpfY6n1t5kbP6GQ2zzDQ75um-wS3lPOe0Oh_3o7WLojtF3H7_SJTuj0CW8-tUZ-3h8eF8-F6vXp5fl_aoAWZqhKMm4QNaRpzqQBA-6MdY01mvu61J64B6BjK8thDo4TYCcHCC4GpVt1IzNp16IfUoRqdrGdh3ivhK8Om6spKimjSN7O7HbkCB0FMMG2vT3oIxS2rkRu5mwFhH_06njB-HlWT4</recordid><startdate>19950601</startdate><enddate>19950601</enddate><creator>Ahson, S.I.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19950601</creationdate><title>Petri net models of fuzzy neural networks</title><author>Ahson, S.I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c275t-7f58af68f9fbaf2c9c4d565d69409b729c09ecf59b6caba84fce0f8cec8be36d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Computer architecture</topic><topic>Computer networks</topic><topic>Computer science; control theory; systems</topic><topic>Concurrent computing</topic><topic>Connectionism. Neural networks</topic><topic>Distributed computing</topic><topic>Exact sciences and technology</topic><topic>Fuzzy neural networks</topic><topic>Fuzzy reasoning</topic><topic>High performance computing</topic><topic>Neurons</topic><topic>Petri nets</topic><toplevel>online_resources</toplevel><creatorcontrib>Ahson, S.I.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>IEEE transactions on systems, man, and cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ahson, S.I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Petri net models of fuzzy neural networks</atitle><jtitle>IEEE transactions on systems, man, and cybernetics</jtitle><stitle>T-SMC</stitle><date>1995-06-01</date><risdate>1995</risdate><volume>25</volume><issue>6</issue><spage>926</spage><epage>932</epage><pages>926-932</pages><issn>0018-9472</issn><eissn>2168-2909</eissn><coden>ISYMAW</coden><abstract>Artificial neural networks (ANN's) are highly parallel and distributed computational structures that can learn from experience and perform inferences. Petri nets, on the other hand, provide an effective modeling framework for distributed systems. The basic concepts of Petri net are utilized to develop ANN-like multilayered Petri net architectures of distributed intelligence having learning ability. A Petri net model of single neuron is presented. A two-layer Petri net model-neural Petri net (NPN)-that uses this neuron model as a building block is described. A new class of Petri nets called the fuzzy neural Petri net (FNPN) is defined. The FNPN can be used for representing a fuzzy knowledge base and for fuzzy reasoning. Some application examples for the two Petri net based models are given.&lt; &gt;</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/21.384255</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9472
ispartof IEEE transactions on systems, man, and cybernetics, 1995-06, Vol.25 (6), p.926-932
issn 0018-9472
2168-2909
language eng
recordid cdi_pascalfrancis_primary_3533488
source IEEE Electronic Library (IEL)
subjects Applied sciences
Artificial intelligence
Artificial neural networks
Computer architecture
Computer networks
Computer science
control theory
systems
Concurrent computing
Connectionism. Neural networks
Distributed computing
Exact sciences and technology
Fuzzy neural networks
Fuzzy reasoning
High performance computing
Neurons
Petri nets
title Petri net models of fuzzy neural networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T01%3A14%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Petri%20net%20models%20of%20fuzzy%20neural%20networks&rft.jtitle=IEEE%20transactions%20on%20systems,%20man,%20and%20cybernetics&rft.au=Ahson,%20S.I.&rft.date=1995-06-01&rft.volume=25&rft.issue=6&rft.spage=926&rft.epage=932&rft.pages=926-932&rft.issn=0018-9472&rft.eissn=2168-2909&rft.coden=ISYMAW&rft_id=info:doi/10.1109/21.384255&rft_dat=%3Cpascalfrancis_RIE%3E3533488%3C/pascalfrancis_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=384255&rfr_iscdi=true