Sensitivity analysis for probability assessments in Bayesian networks

When eliciting a probability model from experts, knowledge engineers may compare the results of the model with expert judgment on test scenarios, then adjust model parameters to bring the behavior of the model more in line with the experts intuition. This paper presents a methodology for analytic co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on systems, man, and cybernetics man, and cybernetics, 1995-06, Vol.25 (6), p.901-909
1. Verfasser: Laskey, K.B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 909
container_issue 6
container_start_page 901
container_title IEEE transactions on systems, man, and cybernetics
container_volume 25
creator Laskey, K.B.
description When eliciting a probability model from experts, knowledge engineers may compare the results of the model with expert judgment on test scenarios, then adjust model parameters to bring the behavior of the model more in line with the experts intuition. This paper presents a methodology for analytic computation of sensitivity values in Bayesian network models. Sensitivity values are partial derivatives of output probabilities with respect to parameters being varied in the sensitivity analysis. They measure the impact of small changes in a network parameter on a target probability value or distribution. Sensitivity values can be used to focus knowledge elicitation effort on those parameters having the most impact on outputs of concern. Analytic sensitivity values are computed for an example and compared to sensitivity analysis by direct variation of parameters.< >
doi_str_mv 10.1109/21.384252
format Article
fullrecord <record><control><sourceid>pascalfrancis_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_3533476</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>384252</ieee_id><sourcerecordid>3533476</sourcerecordid><originalsourceid>FETCH-LOGICAL-c275t-da7b1499fdaacf1a7faeede6db955680be2c8dff1e61f33a359afd2a636f65953</originalsourceid><addsrcrecordid>eNpFj71LxEAUxBdRMJ4WtlYpbCxy7kd2ky31OD_gwEKtw0vyFlZzm7AvKPnvjUa0Gob5zcAwdi74Wghur6VYqzKXWh6wRApTZtJye8gSzkWZ2byQx-yE6G22eW51wrbPGMiP_sOPUwoBuok8pa6P6RD7Gmrf_QRESLTHMFLqQ3oLE5KHkAYcP_v4TqfsyEFHeParK_Z6t33ZPGS7p_vHzc0ua2Shx6yFoha5ta4FaJyAwgFii6atrdam5DXKpmydE2iEUwqUtuBaCUYZZ7TVasWult0m9kQRXTVEv4c4VYJX3_8rKarl_8xeLuwA1EDnIoTG019BaaXywszYxYJ5RPxPl40vPE1kkw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Sensitivity analysis for probability assessments in Bayesian networks</title><source>IEEE Xplore</source><creator>Laskey, K.B.</creator><creatorcontrib>Laskey, K.B.</creatorcontrib><description>When eliciting a probability model from experts, knowledge engineers may compare the results of the model with expert judgment on test scenarios, then adjust model parameters to bring the behavior of the model more in line with the experts intuition. This paper presents a methodology for analytic computation of sensitivity values in Bayesian network models. Sensitivity values are partial derivatives of output probabilities with respect to parameters being varied in the sensitivity analysis. They measure the impact of small changes in a network parameter on a target probability value or distribution. Sensitivity values can be used to focus knowledge elicitation effort on those parameters having the most impact on outputs of concern. Analytic sensitivity values are computed for an example and compared to sensitivity analysis by direct variation of parameters.&lt; &gt;</description><identifier>ISSN: 0018-9472</identifier><identifier>EISSN: 2168-2909</identifier><identifier>DOI: 10.1109/21.384252</identifier><identifier>CODEN: ISYMAW</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Artificial intelligence ; Bayesian methods ; Computer science; control theory; systems ; Exact sciences and technology ; Expert systems ; Intelligent networks ; Knowledge engineering ; Learning and adaptive systems ; Network topology ; Random variables ; Sensitivity analysis ; System testing ; Uncertainty</subject><ispartof>IEEE transactions on systems, man, and cybernetics, 1995-06, Vol.25 (6), p.901-909</ispartof><rights>1995 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c275t-da7b1499fdaacf1a7faeede6db955680be2c8dff1e61f33a359afd2a636f65953</citedby><cites>FETCH-LOGICAL-c275t-da7b1499fdaacf1a7faeede6db955680be2c8dff1e61f33a359afd2a636f65953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/384252$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/384252$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3533476$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Laskey, K.B.</creatorcontrib><title>Sensitivity analysis for probability assessments in Bayesian networks</title><title>IEEE transactions on systems, man, and cybernetics</title><addtitle>T-SMC</addtitle><description>When eliciting a probability model from experts, knowledge engineers may compare the results of the model with expert judgment on test scenarios, then adjust model parameters to bring the behavior of the model more in line with the experts intuition. This paper presents a methodology for analytic computation of sensitivity values in Bayesian network models. Sensitivity values are partial derivatives of output probabilities with respect to parameters being varied in the sensitivity analysis. They measure the impact of small changes in a network parameter on a target probability value or distribution. Sensitivity values can be used to focus knowledge elicitation effort on those parameters having the most impact on outputs of concern. Analytic sensitivity values are computed for an example and compared to sensitivity analysis by direct variation of parameters.&lt; &gt;</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Bayesian methods</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Expert systems</subject><subject>Intelligent networks</subject><subject>Knowledge engineering</subject><subject>Learning and adaptive systems</subject><subject>Network topology</subject><subject>Random variables</subject><subject>Sensitivity analysis</subject><subject>System testing</subject><subject>Uncertainty</subject><issn>0018-9472</issn><issn>2168-2909</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><recordid>eNpFj71LxEAUxBdRMJ4WtlYpbCxy7kd2ky31OD_gwEKtw0vyFlZzm7AvKPnvjUa0Gob5zcAwdi74Wghur6VYqzKXWh6wRApTZtJye8gSzkWZ2byQx-yE6G22eW51wrbPGMiP_sOPUwoBuok8pa6P6RD7Gmrf_QRESLTHMFLqQ3oLE5KHkAYcP_v4TqfsyEFHeParK_Z6t33ZPGS7p_vHzc0ua2Shx6yFoha5ta4FaJyAwgFii6atrdam5DXKpmydE2iEUwqUtuBaCUYZZ7TVasWult0m9kQRXTVEv4c4VYJX3_8rKarl_8xeLuwA1EDnIoTG019BaaXywszYxYJ5RPxPl40vPE1kkw</recordid><startdate>19950601</startdate><enddate>19950601</enddate><creator>Laskey, K.B.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19950601</creationdate><title>Sensitivity analysis for probability assessments in Bayesian networks</title><author>Laskey, K.B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c275t-da7b1499fdaacf1a7faeede6db955680be2c8dff1e61f33a359afd2a636f65953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Bayesian methods</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Expert systems</topic><topic>Intelligent networks</topic><topic>Knowledge engineering</topic><topic>Learning and adaptive systems</topic><topic>Network topology</topic><topic>Random variables</topic><topic>Sensitivity analysis</topic><topic>System testing</topic><topic>Uncertainty</topic><toplevel>online_resources</toplevel><creatorcontrib>Laskey, K.B.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>IEEE transactions on systems, man, and cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Laskey, K.B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sensitivity analysis for probability assessments in Bayesian networks</atitle><jtitle>IEEE transactions on systems, man, and cybernetics</jtitle><stitle>T-SMC</stitle><date>1995-06-01</date><risdate>1995</risdate><volume>25</volume><issue>6</issue><spage>901</spage><epage>909</epage><pages>901-909</pages><issn>0018-9472</issn><eissn>2168-2909</eissn><coden>ISYMAW</coden><abstract>When eliciting a probability model from experts, knowledge engineers may compare the results of the model with expert judgment on test scenarios, then adjust model parameters to bring the behavior of the model more in line with the experts intuition. This paper presents a methodology for analytic computation of sensitivity values in Bayesian network models. Sensitivity values are partial derivatives of output probabilities with respect to parameters being varied in the sensitivity analysis. They measure the impact of small changes in a network parameter on a target probability value or distribution. Sensitivity values can be used to focus knowledge elicitation effort on those parameters having the most impact on outputs of concern. Analytic sensitivity values are computed for an example and compared to sensitivity analysis by direct variation of parameters.&lt; &gt;</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/21.384252</doi><tpages>9</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9472
ispartof IEEE transactions on systems, man, and cybernetics, 1995-06, Vol.25 (6), p.901-909
issn 0018-9472
2168-2909
language eng
recordid cdi_pascalfrancis_primary_3533476
source IEEE Xplore
subjects Applied sciences
Artificial intelligence
Bayesian methods
Computer science
control theory
systems
Exact sciences and technology
Expert systems
Intelligent networks
Knowledge engineering
Learning and adaptive systems
Network topology
Random variables
Sensitivity analysis
System testing
Uncertainty
title Sensitivity analysis for probability assessments in Bayesian networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T17%3A41%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sensitivity%20analysis%20for%20probability%20assessments%20in%20Bayesian%20networks&rft.jtitle=IEEE%20transactions%20on%20systems,%20man,%20and%20cybernetics&rft.au=Laskey,%20K.B.&rft.date=1995-06-01&rft.volume=25&rft.issue=6&rft.spage=901&rft.epage=909&rft.pages=901-909&rft.issn=0018-9472&rft.eissn=2168-2909&rft.coden=ISYMAW&rft_id=info:doi/10.1109/21.384252&rft_dat=%3Cpascalfrancis_RIE%3E3533476%3C/pascalfrancis_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=384252&rfr_iscdi=true