Response of photovoltaic cells to pulsed laser illumination

Future space missions may use laser power beaming systems with a free electron laser (FEL) to transmit light to a photovoltaic array receiver. To investigate the efficiency of solar cells with pulsed laser light, several types of GaAs, Si, CuInSe/sub 2/, and GaSb cells were tested with the simulated...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE Transactions on Electron Devices 1995-04, Vol.42 (4), p.744-751
Hauptverfasser: Lowe, R.A., Landis, G.A., Jenkins, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 751
container_issue 4
container_start_page 744
container_title IEEE Transactions on Electron Devices
container_volume 42
creator Lowe, R.A.
Landis, G.A.
Jenkins, P.
description Future space missions may use laser power beaming systems with a free electron laser (FEL) to transmit light to a photovoltaic array receiver. To investigate the efficiency of solar cells with pulsed laser light, several types of GaAs, Si, CuInSe/sub 2/, and GaSb cells were tested with the simulated pulse format of the induction and radio frequency (RF) FEL. The induction pulse format was simulated with an 800-watt average power copper vapor laser and the RF format with a frequency-doubled mode-locked Nd:YAG laser. Averaged current versus bias voltage measurements for each cell were taken at various optical power levels and the efficiency measured at the maximum power point. Experimental results show that the conversion efficiency for the cells tested is highly dependent on cell minority carrier lifetime, the width and frequency of the pulses, load impedance, and the average incident power. Three main effects were found to decrease the efficiency of solar cells exposed to simulated FEL illumination: cell series resistance, LC "ringing", and output inductance. Improvements in efficiency were achieved by modifying the frequency response of the cell to match the spectral energy content of the laser pulse with external passive components.< >
doi_str_mv 10.1109/16.372080
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_3492686</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>372080</ieee_id><sourcerecordid>25981261</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-720d1bb43ec3e986483ffa60be0f79488a17f5307fc818d53ca1b78763d6ad683</originalsourceid><addsrcrecordid>eNqFkM1LxDAQxYMouK4evHrKQQQPXZMmTRM8yeIXLAii55BNEzaSbWonFfzv7dJFj56G4f3mzcxD6JySBaVE3VCxYHVJJDlAM1pVdaEEF4doRgiVhWKSHaMTgI-xFZyXM3T76qBLLTicPO42KaevFLMJFlsXI-CccDdEcA2OBlyPQ4zDNrQmh9SeoiNvRu1sX-fo_eH-bflUrF4en5d3q8IyUeZiPKeh6zVnzjKnpOCSeW8EWTvia8WlNLT2FSO1t5LKpmLW0HUta8EaYRoh2RzhyTdBDhpsyM5ubGpbZ7Pmgig1IlcT0vXpc3CQ9TbA7gPTujSALmW128v_ByslaSnoCF5PoO0TQO-87vqwNf23pkTvotZU6Cnqkb3cmxqwJvretDbA7wDjqhRSjNjFhAXn3J86efwAFjuEkw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>25981261</pqid></control><display><type>article</type><title>Response of photovoltaic cells to pulsed laser illumination</title><source>IEEE Electronic Library (IEL)</source><creator>Lowe, R.A. ; Landis, G.A. ; Jenkins, P.</creator><creatorcontrib>Lowe, R.A. ; Landis, G.A. ; Jenkins, P.</creatorcontrib><description>Future space missions may use laser power beaming systems with a free electron laser (FEL) to transmit light to a photovoltaic array receiver. To investigate the efficiency of solar cells with pulsed laser light, several types of GaAs, Si, CuInSe/sub 2/, and GaSb cells were tested with the simulated pulse format of the induction and radio frequency (RF) FEL. The induction pulse format was simulated with an 800-watt average power copper vapor laser and the RF format with a frequency-doubled mode-locked Nd:YAG laser. Averaged current versus bias voltage measurements for each cell were taken at various optical power levels and the efficiency measured at the maximum power point. Experimental results show that the conversion efficiency for the cells tested is highly dependent on cell minority carrier lifetime, the width and frequency of the pulses, load impedance, and the average incident power. Three main effects were found to decrease the efficiency of solar cells exposed to simulated FEL illumination: cell series resistance, LC "ringing", and output inductance. Improvements in efficiency were achieved by modifying the frequency response of the cell to match the spectral energy content of the laser pulse with external passive components.&lt; &gt;</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/16.372080</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Electron beams ; Electronics ; Exact sciences and technology ; EXPERIMENTAL DATA ; Free electron lasers ; Gas lasers ; Laser mode locking ; LASER RADIATION ; Lighting ; NEODYMIUM LASERS ; Optical pulses ; Optoelectronic devices ; PERFORMANCE TESTING ; PHOTOVOLTAIC CELLS ; PHOTOVOLTAIC CONVERSION ; Power lasers ; POWER TRANSMISSION ; POWER TRANSMISSION AND DISTRIBUTION ; Radio frequency ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; SIMULATION ; SOLAR ENERGY ; SPACE FLIGHT ; Space missions</subject><ispartof>IEEE Transactions on Electron Devices, 1995-04, Vol.42 (4), p.744-751</ispartof><rights>1995 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-720d1bb43ec3e986483ffa60be0f79488a17f5307fc818d53ca1b78763d6ad683</citedby><cites>FETCH-LOGICAL-c362t-720d1bb43ec3e986483ffa60be0f79488a17f5307fc818d53ca1b78763d6ad683</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/372080$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,881,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/372080$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3492686$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/46099$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Lowe, R.A.</creatorcontrib><creatorcontrib>Landis, G.A.</creatorcontrib><creatorcontrib>Jenkins, P.</creatorcontrib><title>Response of photovoltaic cells to pulsed laser illumination</title><title>IEEE Transactions on Electron Devices</title><addtitle>TED</addtitle><description>Future space missions may use laser power beaming systems with a free electron laser (FEL) to transmit light to a photovoltaic array receiver. To investigate the efficiency of solar cells with pulsed laser light, several types of GaAs, Si, CuInSe/sub 2/, and GaSb cells were tested with the simulated pulse format of the induction and radio frequency (RF) FEL. The induction pulse format was simulated with an 800-watt average power copper vapor laser and the RF format with a frequency-doubled mode-locked Nd:YAG laser. Averaged current versus bias voltage measurements for each cell were taken at various optical power levels and the efficiency measured at the maximum power point. Experimental results show that the conversion efficiency for the cells tested is highly dependent on cell minority carrier lifetime, the width and frequency of the pulses, load impedance, and the average incident power. Three main effects were found to decrease the efficiency of solar cells exposed to simulated FEL illumination: cell series resistance, LC "ringing", and output inductance. Improvements in efficiency were achieved by modifying the frequency response of the cell to match the spectral energy content of the laser pulse with external passive components.&lt; &gt;</description><subject>Applied sciences</subject><subject>Electron beams</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>EXPERIMENTAL DATA</subject><subject>Free electron lasers</subject><subject>Gas lasers</subject><subject>Laser mode locking</subject><subject>LASER RADIATION</subject><subject>Lighting</subject><subject>NEODYMIUM LASERS</subject><subject>Optical pulses</subject><subject>Optoelectronic devices</subject><subject>PERFORMANCE TESTING</subject><subject>PHOTOVOLTAIC CELLS</subject><subject>PHOTOVOLTAIC CONVERSION</subject><subject>Power lasers</subject><subject>POWER TRANSMISSION</subject><subject>POWER TRANSMISSION AND DISTRIBUTION</subject><subject>Radio frequency</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>SIMULATION</subject><subject>SOLAR ENERGY</subject><subject>SPACE FLIGHT</subject><subject>Space missions</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><recordid>eNqFkM1LxDAQxYMouK4evHrKQQQPXZMmTRM8yeIXLAii55BNEzaSbWonFfzv7dJFj56G4f3mzcxD6JySBaVE3VCxYHVJJDlAM1pVdaEEF4doRgiVhWKSHaMTgI-xFZyXM3T76qBLLTicPO42KaevFLMJFlsXI-CccDdEcA2OBlyPQ4zDNrQmh9SeoiNvRu1sX-fo_eH-bflUrF4en5d3q8IyUeZiPKeh6zVnzjKnpOCSeW8EWTvia8WlNLT2FSO1t5LKpmLW0HUta8EaYRoh2RzhyTdBDhpsyM5ubGpbZ7Pmgig1IlcT0vXpc3CQ9TbA7gPTujSALmW128v_ByslaSnoCF5PoO0TQO-87vqwNf23pkTvotZU6Cnqkb3cmxqwJvretDbA7wDjqhRSjNjFhAXn3J86efwAFjuEkw</recordid><startdate>19950401</startdate><enddate>19950401</enddate><creator>Lowe, R.A.</creator><creator>Landis, G.A.</creator><creator>Jenkins, P.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>19950401</creationdate><title>Response of photovoltaic cells to pulsed laser illumination</title><author>Lowe, R.A. ; Landis, G.A. ; Jenkins, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-720d1bb43ec3e986483ffa60be0f79488a17f5307fc818d53ca1b78763d6ad683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Applied sciences</topic><topic>Electron beams</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>EXPERIMENTAL DATA</topic><topic>Free electron lasers</topic><topic>Gas lasers</topic><topic>Laser mode locking</topic><topic>LASER RADIATION</topic><topic>Lighting</topic><topic>NEODYMIUM LASERS</topic><topic>Optical pulses</topic><topic>Optoelectronic devices</topic><topic>PERFORMANCE TESTING</topic><topic>PHOTOVOLTAIC CELLS</topic><topic>PHOTOVOLTAIC CONVERSION</topic><topic>Power lasers</topic><topic>POWER TRANSMISSION</topic><topic>POWER TRANSMISSION AND DISTRIBUTION</topic><topic>Radio frequency</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>SIMULATION</topic><topic>SOLAR ENERGY</topic><topic>SPACE FLIGHT</topic><topic>Space missions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lowe, R.A.</creatorcontrib><creatorcontrib>Landis, G.A.</creatorcontrib><creatorcontrib>Jenkins, P.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>IEEE Transactions on Electron Devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lowe, R.A.</au><au>Landis, G.A.</au><au>Jenkins, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Response of photovoltaic cells to pulsed laser illumination</atitle><jtitle>IEEE Transactions on Electron Devices</jtitle><stitle>TED</stitle><date>1995-04-01</date><risdate>1995</risdate><volume>42</volume><issue>4</issue><spage>744</spage><epage>751</epage><pages>744-751</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>Future space missions may use laser power beaming systems with a free electron laser (FEL) to transmit light to a photovoltaic array receiver. To investigate the efficiency of solar cells with pulsed laser light, several types of GaAs, Si, CuInSe/sub 2/, and GaSb cells were tested with the simulated pulse format of the induction and radio frequency (RF) FEL. The induction pulse format was simulated with an 800-watt average power copper vapor laser and the RF format with a frequency-doubled mode-locked Nd:YAG laser. Averaged current versus bias voltage measurements for each cell were taken at various optical power levels and the efficiency measured at the maximum power point. Experimental results show that the conversion efficiency for the cells tested is highly dependent on cell minority carrier lifetime, the width and frequency of the pulses, load impedance, and the average incident power. Three main effects were found to decrease the efficiency of solar cells exposed to simulated FEL illumination: cell series resistance, LC "ringing", and output inductance. Improvements in efficiency were achieved by modifying the frequency response of the cell to match the spectral energy content of the laser pulse with external passive components.&lt; &gt;</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/16.372080</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9383
ispartof IEEE Transactions on Electron Devices, 1995-04, Vol.42 (4), p.744-751
issn 0018-9383
1557-9646
language eng
recordid cdi_pascalfrancis_primary_3492686
source IEEE Electronic Library (IEL)
subjects Applied sciences
Electron beams
Electronics
Exact sciences and technology
EXPERIMENTAL DATA
Free electron lasers
Gas lasers
Laser mode locking
LASER RADIATION
Lighting
NEODYMIUM LASERS
Optical pulses
Optoelectronic devices
PERFORMANCE TESTING
PHOTOVOLTAIC CELLS
PHOTOVOLTAIC CONVERSION
Power lasers
POWER TRANSMISSION
POWER TRANSMISSION AND DISTRIBUTION
Radio frequency
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
SIMULATION
SOLAR ENERGY
SPACE FLIGHT
Space missions
title Response of photovoltaic cells to pulsed laser illumination
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T17%3A45%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Response%20of%20photovoltaic%20cells%20to%20pulsed%20laser%20illumination&rft.jtitle=IEEE%20Transactions%20on%20Electron%20Devices&rft.au=Lowe,%20R.A.&rft.date=1995-04-01&rft.volume=42&rft.issue=4&rft.spage=744&rft.epage=751&rft.pages=744-751&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/16.372080&rft_dat=%3Cproquest_RIE%3E25981261%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=25981261&rft_id=info:pmid/&rft_ieee_id=372080&rfr_iscdi=true