Vectorization of the DLMS transversal adaptive filter

The subject of high sampling rate realizations for transversal adaptive filters is addressed. In particular, a vectorized version of the delayed least mean squares (DLMS) algorithm is derived using look-ahead computation techniques. The resulting parallel algorithm is then mapped onto a linear array...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 1994-11, Vol.42 (11), p.3237-3240
Hauptverfasser: Meyer, M.D., Agrawal, D.P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3240
container_issue 11
container_start_page 3237
container_title IEEE transactions on signal processing
container_volume 42
creator Meyer, M.D.
Agrawal, D.P.
description The subject of high sampling rate realizations for transversal adaptive filters is addressed. In particular, a vectorized version of the delayed least mean squares (DLMS) algorithm is derived using look-ahead computation techniques. The resulting parallel algorithm is then mapped onto a linear array of highly pipelined processing modules, which can accept an input vector of arbitrary length, and compute the corresponding output vector in a single clock cycle. The proposed system is shown to be capable of implementing transversal adaptive filters at sampling rates which are theoretically without bound. The performance of the proposed system is analyzed and simulation results are presented to verify the convergence properties of the algorithm under varying degrees of vectorization.< >
doi_str_mv 10.1109/78.330384
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_3376696</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>330384</ieee_id><sourcerecordid>27299193</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-7a0bed70b42446e3da36a72e35e262fe0a3d7dd025b7c2f1d54dff36129358e93</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWKsHr572IIKHrUkmH5uj1E-oePADb0u6mWBk261JWtBf72qLePM0A_PMC-9DyCGjI8aoOdPVCIBCJbbIgBnBSiq02u53KqGUlX7ZJXspvVHKhDBqQOQzNrmL4dPm0M2Lzhf5FYuLyd1DkaOdpxXGZNvCOrvIYYWFD23GuE92vG0THmzmkDxdXT6Ob8rJ_fXt-HxSNgA6l9rSKTpNp4ILoRCcBWU1R5DIFfdILTjtHOVyqhvumZPCeQ-KcQOyQgNDcrLOXcTufYkp17OQGmxbO8dumWpeaejryv9BzY1hBnrwdA02sUspoq8XMcxs_KgZrb8N1rqq1wZ79ngTalNjW9_7aEL6fegrKmVUjx2tsYCIf64_GV_hxXbq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27299193</pqid></control><display><type>article</type><title>Vectorization of the DLMS transversal adaptive filter</title><source>IEEE Electronic Library (IEL)</source><creator>Meyer, M.D. ; Agrawal, D.P.</creator><creatorcontrib>Meyer, M.D. ; Agrawal, D.P.</creatorcontrib><description>The subject of high sampling rate realizations for transversal adaptive filters is addressed. In particular, a vectorized version of the delayed least mean squares (DLMS) algorithm is derived using look-ahead computation techniques. The resulting parallel algorithm is then mapped onto a linear array of highly pipelined processing modules, which can accept an input vector of arbitrary length, and compute the corresponding output vector in a single clock cycle. The proposed system is shown to be capable of implementing transversal adaptive filters at sampling rates which are theoretically without bound. The performance of the proposed system is analyzed and simulation results are presented to verify the convergence properties of the algorithm under varying degrees of vectorization.&lt; &gt;</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/78.330384</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Adaptive filters ; Algorithm design and analysis ; Applied sciences ; Clocks ; Computational modeling ; Concurrent computing ; Delay ; Detection, estimation, filtering, equalization, prediction ; Exact sciences and technology ; Information, signal and communications theory ; Parallel algorithms ; Performance analysis ; Sampling methods ; Signal and communications theory ; Signal, noise ; Telecommunications and information theory ; Vectors</subject><ispartof>IEEE transactions on signal processing, 1994-11, Vol.42 (11), p.3237-3240</ispartof><rights>1995 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-7a0bed70b42446e3da36a72e35e262fe0a3d7dd025b7c2f1d54dff36129358e93</citedby><cites>FETCH-LOGICAL-c337t-7a0bed70b42446e3da36a72e35e262fe0a3d7dd025b7c2f1d54dff36129358e93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/330384$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/330384$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3376696$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Meyer, M.D.</creatorcontrib><creatorcontrib>Agrawal, D.P.</creatorcontrib><title>Vectorization of the DLMS transversal adaptive filter</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>The subject of high sampling rate realizations for transversal adaptive filters is addressed. In particular, a vectorized version of the delayed least mean squares (DLMS) algorithm is derived using look-ahead computation techniques. The resulting parallel algorithm is then mapped onto a linear array of highly pipelined processing modules, which can accept an input vector of arbitrary length, and compute the corresponding output vector in a single clock cycle. The proposed system is shown to be capable of implementing transversal adaptive filters at sampling rates which are theoretically without bound. The performance of the proposed system is analyzed and simulation results are presented to verify the convergence properties of the algorithm under varying degrees of vectorization.&lt; &gt;</description><subject>Adaptive filters</subject><subject>Algorithm design and analysis</subject><subject>Applied sciences</subject><subject>Clocks</subject><subject>Computational modeling</subject><subject>Concurrent computing</subject><subject>Delay</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Exact sciences and technology</subject><subject>Information, signal and communications theory</subject><subject>Parallel algorithms</subject><subject>Performance analysis</subject><subject>Sampling methods</subject><subject>Signal and communications theory</subject><subject>Signal, noise</subject><subject>Telecommunications and information theory</subject><subject>Vectors</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWKsHr572IIKHrUkmH5uj1E-oePADb0u6mWBk261JWtBf72qLePM0A_PMC-9DyCGjI8aoOdPVCIBCJbbIgBnBSiq02u53KqGUlX7ZJXspvVHKhDBqQOQzNrmL4dPm0M2Lzhf5FYuLyd1DkaOdpxXGZNvCOrvIYYWFD23GuE92vG0THmzmkDxdXT6Ob8rJ_fXt-HxSNgA6l9rSKTpNp4ILoRCcBWU1R5DIFfdILTjtHOVyqhvumZPCeQ-KcQOyQgNDcrLOXcTufYkp17OQGmxbO8dumWpeaejryv9BzY1hBnrwdA02sUspoq8XMcxs_KgZrb8N1rqq1wZ79ngTalNjW9_7aEL6fegrKmVUjx2tsYCIf64_GV_hxXbq</recordid><startdate>19941101</startdate><enddate>19941101</enddate><creator>Meyer, M.D.</creator><creator>Agrawal, D.P.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19941101</creationdate><title>Vectorization of the DLMS transversal adaptive filter</title><author>Meyer, M.D. ; Agrawal, D.P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-7a0bed70b42446e3da36a72e35e262fe0a3d7dd025b7c2f1d54dff36129358e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Adaptive filters</topic><topic>Algorithm design and analysis</topic><topic>Applied sciences</topic><topic>Clocks</topic><topic>Computational modeling</topic><topic>Concurrent computing</topic><topic>Delay</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Exact sciences and technology</topic><topic>Information, signal and communications theory</topic><topic>Parallel algorithms</topic><topic>Performance analysis</topic><topic>Sampling methods</topic><topic>Signal and communications theory</topic><topic>Signal, noise</topic><topic>Telecommunications and information theory</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meyer, M.D.</creatorcontrib><creatorcontrib>Agrawal, D.P.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Meyer, M.D.</au><au>Agrawal, D.P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vectorization of the DLMS transversal adaptive filter</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>1994-11-01</date><risdate>1994</risdate><volume>42</volume><issue>11</issue><spage>3237</spage><epage>3240</epage><pages>3237-3240</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>The subject of high sampling rate realizations for transversal adaptive filters is addressed. In particular, a vectorized version of the delayed least mean squares (DLMS) algorithm is derived using look-ahead computation techniques. The resulting parallel algorithm is then mapped onto a linear array of highly pipelined processing modules, which can accept an input vector of arbitrary length, and compute the corresponding output vector in a single clock cycle. The proposed system is shown to be capable of implementing transversal adaptive filters at sampling rates which are theoretically without bound. The performance of the proposed system is analyzed and simulation results are presented to verify the convergence properties of the algorithm under varying degrees of vectorization.&lt; &gt;</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/78.330384</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1053-587X
ispartof IEEE transactions on signal processing, 1994-11, Vol.42 (11), p.3237-3240
issn 1053-587X
1941-0476
language eng
recordid cdi_pascalfrancis_primary_3376696
source IEEE Electronic Library (IEL)
subjects Adaptive filters
Algorithm design and analysis
Applied sciences
Clocks
Computational modeling
Concurrent computing
Delay
Detection, estimation, filtering, equalization, prediction
Exact sciences and technology
Information, signal and communications theory
Parallel algorithms
Performance analysis
Sampling methods
Signal and communications theory
Signal, noise
Telecommunications and information theory
Vectors
title Vectorization of the DLMS transversal adaptive filter
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T04%3A32%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vectorization%20of%20the%20DLMS%20transversal%20adaptive%20filter&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Meyer,%20M.D.&rft.date=1994-11-01&rft.volume=42&rft.issue=11&rft.spage=3237&rft.epage=3240&rft.pages=3237-3240&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/78.330384&rft_dat=%3Cproquest_RIE%3E27299193%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27299193&rft_id=info:pmid/&rft_ieee_id=330384&rfr_iscdi=true