Investigating the effectiveness of conditional classification: an application to manufacturing scheduling

This paper examines the problem of multidimensional classification, an automated learning process where "rules" are to be inferred on separate but related aspects of a problem, using identical or overlapping data sets. A general framework describing the various types of multidimensional cl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on engineering management 1994-05, Vol.41 (2), p.183-193
Hauptverfasser: Chaturvedi, A.R., Nazareth, D.L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 193
container_issue 2
container_start_page 183
container_title IEEE transactions on engineering management
container_volume 41
creator Chaturvedi, A.R.
Nazareth, D.L.
description This paper examines the problem of multidimensional classification, an automated learning process where "rules" are to be inferred on separate but related aspects of a problem, using identical or overlapping data sets. A general framework describing the various types of multidimensional classification is provided. The paper specifically concentrates on conditional classification, wherein the order of classification is based on domain semantics. Drawing from concept learning and information theory, algorithms are presented for acquiring tree-structured knowledge from available data. An application to manufacturing scheduling is presented. Results indicate that conditional classification may provide some ability to better interpret related decisions in automated manufacturing contexts. Further work is necessary to ascertain if the approach is robust, particularly on more complex decisions, larger data sets, and noisy data.< >
doi_str_mv 10.1109/17.293385
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_3349190</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>293385</ieee_id><sourcerecordid>877911</sourcerecordid><originalsourceid>FETCH-LOGICAL-c262t-f11ccb5f4cf00c13838177f62a9956320d849ef5ec175ce269f02f6832898cf13</originalsourceid><addsrcrecordid>eNo9kD1PwzAQhi0EEqUwsDJZiIUhxWfHic2GKj4qVWKBOTJXu3WVOiFOKvHvcdWok_2eHz-6O0Jugc0AmH6Ccsa1EEqekQlIqTLGcnZOJoyByrTQcEmuYtymmEvOJsQvwt7G3q9N78Oa9htLrXMWe7-3wcZIG0exCSvf-yaYmmJtYvTOozkUnqkJ1LRtPWbaN3RnwuAM9kN3EEbc2NVQp-s1uXCmjvZmPKfk--31a_6RLT_fF_OXZYa84H3mABB_pMvRMYYglFBQlq7gRmtZCM5WKtfWSYtQSrS80I5xVyjBlVboQEzJ_dHbds3vkGarts3Qpd5jBckghZQyQY9HCLsmxs66qu38znR_FbDqsMgKyuq4yMQ-jEIT0dSuMwF9PH0QItegWcLujpi31p5eR8c_0eh7tA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195653555</pqid></control><display><type>article</type><title>Investigating the effectiveness of conditional classification: an application to manufacturing scheduling</title><source>IEEE Electronic Library (IEL)</source><creator>Chaturvedi, A.R. ; Nazareth, D.L.</creator><creatorcontrib>Chaturvedi, A.R. ; Nazareth, D.L.</creatorcontrib><description>This paper examines the problem of multidimensional classification, an automated learning process where "rules" are to be inferred on separate but related aspects of a problem, using identical or overlapping data sets. A general framework describing the various types of multidimensional classification is provided. The paper specifically concentrates on conditional classification, wherein the order of classification is based on domain semantics. Drawing from concept learning and information theory, algorithms are presented for acquiring tree-structured knowledge from available data. An application to manufacturing scheduling is presented. Results indicate that conditional classification may provide some ability to better interpret related decisions in automated manufacturing contexts. Further work is necessary to ascertain if the approach is robust, particularly on more complex decisions, larger data sets, and noisy data.&lt; &gt;</description><identifier>ISSN: 0018-9391</identifier><identifier>EISSN: 1558-0040</identifier><identifier>DOI: 10.1109/17.293385</identifier><identifier>CODEN: IEEMA4</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Automation ; Availability ; Classification ; Data mining ; Decision trees ; Effectiveness ; Exact sciences and technology ; Expert systems ; Humans ; Job shop scheduling ; Machine learning ; Manufacturing ; Manufacturing automation ; Manufacturing processes ; Mathematical models ; Operational research and scientific management ; Operational research. Management science ; Pulp manufacturing ; Robustness ; Scheduling ; Scheduling, sequencing ; Studies</subject><ispartof>IEEE transactions on engineering management, 1994-05, Vol.41 (2), p.183-193</ispartof><rights>1995 INIST-CNRS</rights><rights>Copyright Institute of Electrical and Electronics Engineers, Inc. (IEEE) May 1994</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c262t-f11ccb5f4cf00c13838177f62a9956320d849ef5ec175ce269f02f6832898cf13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/293385$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/293385$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3349190$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Chaturvedi, A.R.</creatorcontrib><creatorcontrib>Nazareth, D.L.</creatorcontrib><title>Investigating the effectiveness of conditional classification: an application to manufacturing scheduling</title><title>IEEE transactions on engineering management</title><addtitle>TEM</addtitle><description>This paper examines the problem of multidimensional classification, an automated learning process where "rules" are to be inferred on separate but related aspects of a problem, using identical or overlapping data sets. A general framework describing the various types of multidimensional classification is provided. The paper specifically concentrates on conditional classification, wherein the order of classification is based on domain semantics. Drawing from concept learning and information theory, algorithms are presented for acquiring tree-structured knowledge from available data. An application to manufacturing scheduling is presented. Results indicate that conditional classification may provide some ability to better interpret related decisions in automated manufacturing contexts. Further work is necessary to ascertain if the approach is robust, particularly on more complex decisions, larger data sets, and noisy data.&lt; &gt;</description><subject>Applied sciences</subject><subject>Automation</subject><subject>Availability</subject><subject>Classification</subject><subject>Data mining</subject><subject>Decision trees</subject><subject>Effectiveness</subject><subject>Exact sciences and technology</subject><subject>Expert systems</subject><subject>Humans</subject><subject>Job shop scheduling</subject><subject>Machine learning</subject><subject>Manufacturing</subject><subject>Manufacturing automation</subject><subject>Manufacturing processes</subject><subject>Mathematical models</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Pulp manufacturing</subject><subject>Robustness</subject><subject>Scheduling</subject><subject>Scheduling, sequencing</subject><subject>Studies</subject><issn>0018-9391</issn><issn>1558-0040</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><recordid>eNo9kD1PwzAQhi0EEqUwsDJZiIUhxWfHic2GKj4qVWKBOTJXu3WVOiFOKvHvcdWok_2eHz-6O0Jugc0AmH6Ccsa1EEqekQlIqTLGcnZOJoyByrTQcEmuYtymmEvOJsQvwt7G3q9N78Oa9htLrXMWe7-3wcZIG0exCSvf-yaYmmJtYvTOozkUnqkJ1LRtPWbaN3RnwuAM9kN3EEbc2NVQp-s1uXCmjvZmPKfk--31a_6RLT_fF_OXZYa84H3mABB_pMvRMYYglFBQlq7gRmtZCM5WKtfWSYtQSrS80I5xVyjBlVboQEzJ_dHbds3vkGarts3Qpd5jBckghZQyQY9HCLsmxs66qu38znR_FbDqsMgKyuq4yMQ-jEIT0dSuMwF9PH0QItegWcLujpi31p5eR8c_0eh7tA</recordid><startdate>19940501</startdate><enddate>19940501</enddate><creator>Chaturvedi, A.R.</creator><creator>Nazareth, D.L.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19940501</creationdate><title>Investigating the effectiveness of conditional classification: an application to manufacturing scheduling</title><author>Chaturvedi, A.R. ; Nazareth, D.L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c262t-f11ccb5f4cf00c13838177f62a9956320d849ef5ec175ce269f02f6832898cf13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Applied sciences</topic><topic>Automation</topic><topic>Availability</topic><topic>Classification</topic><topic>Data mining</topic><topic>Decision trees</topic><topic>Effectiveness</topic><topic>Exact sciences and technology</topic><topic>Expert systems</topic><topic>Humans</topic><topic>Job shop scheduling</topic><topic>Machine learning</topic><topic>Manufacturing</topic><topic>Manufacturing automation</topic><topic>Manufacturing processes</topic><topic>Mathematical models</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Pulp manufacturing</topic><topic>Robustness</topic><topic>Scheduling</topic><topic>Scheduling, sequencing</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chaturvedi, A.R.</creatorcontrib><creatorcontrib>Nazareth, D.L.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on engineering management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chaturvedi, A.R.</au><au>Nazareth, D.L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigating the effectiveness of conditional classification: an application to manufacturing scheduling</atitle><jtitle>IEEE transactions on engineering management</jtitle><stitle>TEM</stitle><date>1994-05-01</date><risdate>1994</risdate><volume>41</volume><issue>2</issue><spage>183</spage><epage>193</epage><pages>183-193</pages><issn>0018-9391</issn><eissn>1558-0040</eissn><coden>IEEMA4</coden><abstract>This paper examines the problem of multidimensional classification, an automated learning process where "rules" are to be inferred on separate but related aspects of a problem, using identical or overlapping data sets. A general framework describing the various types of multidimensional classification is provided. The paper specifically concentrates on conditional classification, wherein the order of classification is based on domain semantics. Drawing from concept learning and information theory, algorithms are presented for acquiring tree-structured knowledge from available data. An application to manufacturing scheduling is presented. Results indicate that conditional classification may provide some ability to better interpret related decisions in automated manufacturing contexts. Further work is necessary to ascertain if the approach is robust, particularly on more complex decisions, larger data sets, and noisy data.&lt; &gt;</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/17.293385</doi><tpages>11</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9391
ispartof IEEE transactions on engineering management, 1994-05, Vol.41 (2), p.183-193
issn 0018-9391
1558-0040
language eng
recordid cdi_pascalfrancis_primary_3349190
source IEEE Electronic Library (IEL)
subjects Applied sciences
Automation
Availability
Classification
Data mining
Decision trees
Effectiveness
Exact sciences and technology
Expert systems
Humans
Job shop scheduling
Machine learning
Manufacturing
Manufacturing automation
Manufacturing processes
Mathematical models
Operational research and scientific management
Operational research. Management science
Pulp manufacturing
Robustness
Scheduling
Scheduling, sequencing
Studies
title Investigating the effectiveness of conditional classification: an application to manufacturing scheduling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T07%3A57%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigating%20the%20effectiveness%20of%20conditional%20classification:%20an%20application%20to%20manufacturing%20scheduling&rft.jtitle=IEEE%20transactions%20on%20engineering%20management&rft.au=Chaturvedi,%20A.R.&rft.date=1994-05-01&rft.volume=41&rft.issue=2&rft.spage=183&rft.epage=193&rft.pages=183-193&rft.issn=0018-9391&rft.eissn=1558-0040&rft.coden=IEEMA4&rft_id=info:doi/10.1109/17.293385&rft_dat=%3Cproquest_RIE%3E877911%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=195653555&rft_id=info:pmid/&rft_ieee_id=293385&rfr_iscdi=true