The late chlamydial inclusion membrane is not derived from the endocytic pathway and is relatively deficient in host proteins
Chlamydiae are obligate intracellular parasites which multiply within infected cells in a membrane-bound structure termed an inclusion. Newly internalized bacteria are surrounded by host plasma membrane; however, the source of membrane for the expansion of the inclusion is unknown. To determine if t...
Gespeichert in:
Veröffentlicht in: | Infection and Immunity 1996-09, Vol.64 (9), p.3713-3727 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3727 |
---|---|
container_issue | 9 |
container_start_page | 3713 |
container_title | Infection and Immunity |
container_volume | 64 |
creator | Taraska, T. (University of Utah, Salt Lake City.) Ward, D.M Ajioka, R.S Wyrick, P.B Davis-Kaplan, S.R Davis, C.H Kaplan, J |
description | Chlamydiae are obligate intracellular parasites which multiply within infected cells in a membrane-bound structure termed an inclusion. Newly internalized bacteria are surrounded by host plasma membrane; however, the source of membrane for the expansion of the inclusion is unknown. To determine if the membrane for the mature inclusion was derived by fusion with cellular organelles, we stained infected cells with fluorescent or electron-dense markers specific for organelles and examined inclusions for those markers. We observed no evidence for the presence of endoplasmic reticulum, Golgi, late endosomal, or lysosomal proteins in the inclusion. These data suggest that the expansion of the inclusion membrane, beginning 24 h postinoculation, does not occur by the addition of host proteins resulting from either de novo host synthesis or by fusion with preexisting membranes. To determine the source of the expanding inclusion membrane, antibodies were produced against isolated membranes from Chlamydia-infected mouse cells. The antibodies were demonstrated to be solely against Chlamydia-specified proteins by both immunoprecipitation of [35S]methionine-labeled extracts and Western blotting (immunoblotting). Techniques were used to semipermeabilize Chlamydia-infected cells without disrupting the permeability of the inclusion, allowing antibodies access to the outer surface of the inclusion membrane. Immunofluorescent staining demonstrated a ring-like fluorescence around inclusions in semipermeabilized cells, whereas Triton X-100-permeabilized cells showed staining throughout the inclusion. These studies demonstrate that the inclusion membrane is made up, in part, of Chlamydia-specified proteins and not of existing host membrane proteins |
doi_str_mv | 10.1128/IAI.64.9.3713-3727.1996 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_3202125</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>78269884</sourcerecordid><originalsourceid>FETCH-LOGICAL-c570t-baea58c5be1a2c223e2a540a2144c155ef79998f55ef3a665909ec772054ad033</originalsourceid><addsrcrecordid>eNqFkU9v1DAQxSMEKkvhCyAhjIS4ZbGdOLYPPVQVf1aqxIH2bM06k42REy92tlUOfHcc7WpFT5xsa37vzYxfUbxndM0YV58315t1U6_1upKsKivJ5Zpp3TwrVoxqVQrB-fNiRSnTpRaNfFm8SulXftZ1rS6KCyUF05ytij93PRIPExLbexjm1oEnbrT-kFwYyYDDNsKIxCUyhom0GN0DtqSLYSBTluLYBjtPzpI9TP0jzATGdqEjZtfM-jmLOmcdjlM2Jn1IE9nHMKEb0-viRQc-4ZvTeVncf_1yd_O9vP3xbXNzfVtaIelUbgFBKCu2yIBbzivkIGoKPK9jmRDYSa216pZbBU0jNNVopeRU1NDSqrosro6--8N2wNbmWSJ4s49ugDibAM48rYyuN7vwYJisuRJZ_-mkj-H3AdNkBpcsep-_JhySkYo3Wqn6vyATTTasdAblEbQxpBSxOw_DqFkSNi4P1dRGmyVhsyRsloSz8t2_u5x1p0hz_eOpDsmC73J81qUzVnHKGV9W-nDEerfrH11EA2l42jQzb49MB8HALmab-59acsVFU_0FzwvF2Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>15642839</pqid></control><display><type>article</type><title>The late chlamydial inclusion membrane is not derived from the endocytic pathway and is relatively deficient in host proteins</title><source>American Society for Microbiology</source><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Taraska, T. (University of Utah, Salt Lake City.) ; Ward, D.M ; Ajioka, R.S ; Wyrick, P.B ; Davis-Kaplan, S.R ; Davis, C.H ; Kaplan, J</creator><creatorcontrib>Taraska, T. (University of Utah, Salt Lake City.) ; Ward, D.M ; Ajioka, R.S ; Wyrick, P.B ; Davis-Kaplan, S.R ; Davis, C.H ; Kaplan, J</creatorcontrib><description>Chlamydiae are obligate intracellular parasites which multiply within infected cells in a membrane-bound structure termed an inclusion. Newly internalized bacteria are surrounded by host plasma membrane; however, the source of membrane for the expansion of the inclusion is unknown. To determine if the membrane for the mature inclusion was derived by fusion with cellular organelles, we stained infected cells with fluorescent or electron-dense markers specific for organelles and examined inclusions for those markers. We observed no evidence for the presence of endoplasmic reticulum, Golgi, late endosomal, or lysosomal proteins in the inclusion. These data suggest that the expansion of the inclusion membrane, beginning 24 h postinoculation, does not occur by the addition of host proteins resulting from either de novo host synthesis or by fusion with preexisting membranes. To determine the source of the expanding inclusion membrane, antibodies were produced against isolated membranes from Chlamydia-infected mouse cells. The antibodies were demonstrated to be solely against Chlamydia-specified proteins by both immunoprecipitation of [35S]methionine-labeled extracts and Western blotting (immunoblotting). Techniques were used to semipermeabilize Chlamydia-infected cells without disrupting the permeability of the inclusion, allowing antibodies access to the outer surface of the inclusion membrane. Immunofluorescent staining demonstrated a ring-like fluorescence around inclusions in semipermeabilized cells, whereas Triton X-100-permeabilized cells showed staining throughout the inclusion. These studies demonstrate that the inclusion membrane is made up, in part, of Chlamydia-specified proteins and not of existing host membrane proteins</description><identifier>ISSN: 0019-9567</identifier><identifier>EISSN: 1098-5522</identifier><identifier>DOI: 10.1128/IAI.64.9.3713-3727.1996</identifier><identifier>PMID: 8751921</identifier><identifier>CODEN: INFIBR</identifier><language>eng</language><publisher>Washington, DC: American Society for Microbiology</publisher><subject>3T3 Cells ; Animals ; Antibodies, Bacterial ; Antigens, Bacterial - metabolism ; Bacterial Proteins - metabolism ; Bacteriology ; Biogenesis of cell structures, supramolecular organization ; Biological and medical sciences ; Cell Membrane - metabolism ; Cells, Cultured ; CHLAMYDIA ; Chlamydia Infections - microbiology ; Chlamydia Infections - pathology ; Chlamydia trachomatis - ultrastructure ; Chlamydophila psittaci - ultrastructure ; Dogs ; Endocytosis ; Endoplasmic Reticulum - metabolism ; Fluorescent Antibody Technique, Indirect ; Fundamental and applied biological sciences. Psychology ; Golgi Apparatus - metabolism ; HeLa Cells ; Humans ; Intracellular Membranes - metabolism ; Lectins ; Ligands ; Mice ; Microbiology ; RATON ; Receptors, Transferrin - metabolism ; SOURIS</subject><ispartof>Infection and Immunity, 1996-09, Vol.64 (9), p.3713-3727</ispartof><rights>1996 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c570t-baea58c5be1a2c223e2a540a2144c155ef79998f55ef3a665909ec772054ad033</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC174285/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC174285/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,3175,3176,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=3202125$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/8751921$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Taraska, T. (University of Utah, Salt Lake City.)</creatorcontrib><creatorcontrib>Ward, D.M</creatorcontrib><creatorcontrib>Ajioka, R.S</creatorcontrib><creatorcontrib>Wyrick, P.B</creatorcontrib><creatorcontrib>Davis-Kaplan, S.R</creatorcontrib><creatorcontrib>Davis, C.H</creatorcontrib><creatorcontrib>Kaplan, J</creatorcontrib><title>The late chlamydial inclusion membrane is not derived from the endocytic pathway and is relatively deficient in host proteins</title><title>Infection and Immunity</title><addtitle>Infect Immun</addtitle><description>Chlamydiae are obligate intracellular parasites which multiply within infected cells in a membrane-bound structure termed an inclusion. Newly internalized bacteria are surrounded by host plasma membrane; however, the source of membrane for the expansion of the inclusion is unknown. To determine if the membrane for the mature inclusion was derived by fusion with cellular organelles, we stained infected cells with fluorescent or electron-dense markers specific for organelles and examined inclusions for those markers. We observed no evidence for the presence of endoplasmic reticulum, Golgi, late endosomal, or lysosomal proteins in the inclusion. These data suggest that the expansion of the inclusion membrane, beginning 24 h postinoculation, does not occur by the addition of host proteins resulting from either de novo host synthesis or by fusion with preexisting membranes. To determine the source of the expanding inclusion membrane, antibodies were produced against isolated membranes from Chlamydia-infected mouse cells. The antibodies were demonstrated to be solely against Chlamydia-specified proteins by both immunoprecipitation of [35S]methionine-labeled extracts and Western blotting (immunoblotting). Techniques were used to semipermeabilize Chlamydia-infected cells without disrupting the permeability of the inclusion, allowing antibodies access to the outer surface of the inclusion membrane. Immunofluorescent staining demonstrated a ring-like fluorescence around inclusions in semipermeabilized cells, whereas Triton X-100-permeabilized cells showed staining throughout the inclusion. These studies demonstrate that the inclusion membrane is made up, in part, of Chlamydia-specified proteins and not of existing host membrane proteins</description><subject>3T3 Cells</subject><subject>Animals</subject><subject>Antibodies, Bacterial</subject><subject>Antigens, Bacterial - metabolism</subject><subject>Bacterial Proteins - metabolism</subject><subject>Bacteriology</subject><subject>Biogenesis of cell structures, supramolecular organization</subject><subject>Biological and medical sciences</subject><subject>Cell Membrane - metabolism</subject><subject>Cells, Cultured</subject><subject>CHLAMYDIA</subject><subject>Chlamydia Infections - microbiology</subject><subject>Chlamydia Infections - pathology</subject><subject>Chlamydia trachomatis - ultrastructure</subject><subject>Chlamydophila psittaci - ultrastructure</subject><subject>Dogs</subject><subject>Endocytosis</subject><subject>Endoplasmic Reticulum - metabolism</subject><subject>Fluorescent Antibody Technique, Indirect</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Golgi Apparatus - metabolism</subject><subject>HeLa Cells</subject><subject>Humans</subject><subject>Intracellular Membranes - metabolism</subject><subject>Lectins</subject><subject>Ligands</subject><subject>Mice</subject><subject>Microbiology</subject><subject>RATON</subject><subject>Receptors, Transferrin - metabolism</subject><subject>SOURIS</subject><issn>0019-9567</issn><issn>1098-5522</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU9v1DAQxSMEKkvhCyAhjIS4ZbGdOLYPPVQVf1aqxIH2bM06k42REy92tlUOfHcc7WpFT5xsa37vzYxfUbxndM0YV58315t1U6_1upKsKivJ5Zpp3TwrVoxqVQrB-fNiRSnTpRaNfFm8SulXftZ1rS6KCyUF05ytij93PRIPExLbexjm1oEnbrT-kFwYyYDDNsKIxCUyhom0GN0DtqSLYSBTluLYBjtPzpI9TP0jzATGdqEjZtfM-jmLOmcdjlM2Jn1IE9nHMKEb0-viRQc-4ZvTeVncf_1yd_O9vP3xbXNzfVtaIelUbgFBKCu2yIBbzivkIGoKPK9jmRDYSa216pZbBU0jNNVopeRU1NDSqrosro6--8N2wNbmWSJ4s49ugDibAM48rYyuN7vwYJisuRJZ_-mkj-H3AdNkBpcsep-_JhySkYo3Wqn6vyATTTasdAblEbQxpBSxOw_DqFkSNi4P1dRGmyVhsyRsloSz8t2_u5x1p0hz_eOpDsmC73J81qUzVnHKGV9W-nDEerfrH11EA2l42jQzb49MB8HALmab-59acsVFU_0FzwvF2Q</recordid><startdate>19960901</startdate><enddate>19960901</enddate><creator>Taraska, T. (University of Utah, Salt Lake City.)</creator><creator>Ward, D.M</creator><creator>Ajioka, R.S</creator><creator>Wyrick, P.B</creator><creator>Davis-Kaplan, S.R</creator><creator>Davis, C.H</creator><creator>Kaplan, J</creator><general>American Society for Microbiology</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>C1K</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19960901</creationdate><title>The late chlamydial inclusion membrane is not derived from the endocytic pathway and is relatively deficient in host proteins</title><author>Taraska, T. (University of Utah, Salt Lake City.) ; Ward, D.M ; Ajioka, R.S ; Wyrick, P.B ; Davis-Kaplan, S.R ; Davis, C.H ; Kaplan, J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c570t-baea58c5be1a2c223e2a540a2144c155ef79998f55ef3a665909ec772054ad033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>3T3 Cells</topic><topic>Animals</topic><topic>Antibodies, Bacterial</topic><topic>Antigens, Bacterial - metabolism</topic><topic>Bacterial Proteins - metabolism</topic><topic>Bacteriology</topic><topic>Biogenesis of cell structures, supramolecular organization</topic><topic>Biological and medical sciences</topic><topic>Cell Membrane - metabolism</topic><topic>Cells, Cultured</topic><topic>CHLAMYDIA</topic><topic>Chlamydia Infections - microbiology</topic><topic>Chlamydia Infections - pathology</topic><topic>Chlamydia trachomatis - ultrastructure</topic><topic>Chlamydophila psittaci - ultrastructure</topic><topic>Dogs</topic><topic>Endocytosis</topic><topic>Endoplasmic Reticulum - metabolism</topic><topic>Fluorescent Antibody Technique, Indirect</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Golgi Apparatus - metabolism</topic><topic>HeLa Cells</topic><topic>Humans</topic><topic>Intracellular Membranes - metabolism</topic><topic>Lectins</topic><topic>Ligands</topic><topic>Mice</topic><topic>Microbiology</topic><topic>RATON</topic><topic>Receptors, Transferrin - metabolism</topic><topic>SOURIS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Taraska, T. (University of Utah, Salt Lake City.)</creatorcontrib><creatorcontrib>Ward, D.M</creatorcontrib><creatorcontrib>Ajioka, R.S</creatorcontrib><creatorcontrib>Wyrick, P.B</creatorcontrib><creatorcontrib>Davis-Kaplan, S.R</creatorcontrib><creatorcontrib>Davis, C.H</creatorcontrib><creatorcontrib>Kaplan, J</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Infection and Immunity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Taraska, T. (University of Utah, Salt Lake City.)</au><au>Ward, D.M</au><au>Ajioka, R.S</au><au>Wyrick, P.B</au><au>Davis-Kaplan, S.R</au><au>Davis, C.H</au><au>Kaplan, J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The late chlamydial inclusion membrane is not derived from the endocytic pathway and is relatively deficient in host proteins</atitle><jtitle>Infection and Immunity</jtitle><addtitle>Infect Immun</addtitle><date>1996-09-01</date><risdate>1996</risdate><volume>64</volume><issue>9</issue><spage>3713</spage><epage>3727</epage><pages>3713-3727</pages><issn>0019-9567</issn><eissn>1098-5522</eissn><coden>INFIBR</coden><abstract>Chlamydiae are obligate intracellular parasites which multiply within infected cells in a membrane-bound structure termed an inclusion. Newly internalized bacteria are surrounded by host plasma membrane; however, the source of membrane for the expansion of the inclusion is unknown. To determine if the membrane for the mature inclusion was derived by fusion with cellular organelles, we stained infected cells with fluorescent or electron-dense markers specific for organelles and examined inclusions for those markers. We observed no evidence for the presence of endoplasmic reticulum, Golgi, late endosomal, or lysosomal proteins in the inclusion. These data suggest that the expansion of the inclusion membrane, beginning 24 h postinoculation, does not occur by the addition of host proteins resulting from either de novo host synthesis or by fusion with preexisting membranes. To determine the source of the expanding inclusion membrane, antibodies were produced against isolated membranes from Chlamydia-infected mouse cells. The antibodies were demonstrated to be solely against Chlamydia-specified proteins by both immunoprecipitation of [35S]methionine-labeled extracts and Western blotting (immunoblotting). Techniques were used to semipermeabilize Chlamydia-infected cells without disrupting the permeability of the inclusion, allowing antibodies access to the outer surface of the inclusion membrane. Immunofluorescent staining demonstrated a ring-like fluorescence around inclusions in semipermeabilized cells, whereas Triton X-100-permeabilized cells showed staining throughout the inclusion. These studies demonstrate that the inclusion membrane is made up, in part, of Chlamydia-specified proteins and not of existing host membrane proteins</abstract><cop>Washington, DC</cop><pub>American Society for Microbiology</pub><pmid>8751921</pmid><doi>10.1128/IAI.64.9.3713-3727.1996</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0019-9567 |
ispartof | Infection and Immunity, 1996-09, Vol.64 (9), p.3713-3727 |
issn | 0019-9567 1098-5522 |
language | eng |
recordid | cdi_pascalfrancis_primary_3202125 |
source | American Society for Microbiology; MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | 3T3 Cells Animals Antibodies, Bacterial Antigens, Bacterial - metabolism Bacterial Proteins - metabolism Bacteriology Biogenesis of cell structures, supramolecular organization Biological and medical sciences Cell Membrane - metabolism Cells, Cultured CHLAMYDIA Chlamydia Infections - microbiology Chlamydia Infections - pathology Chlamydia trachomatis - ultrastructure Chlamydophila psittaci - ultrastructure Dogs Endocytosis Endoplasmic Reticulum - metabolism Fluorescent Antibody Technique, Indirect Fundamental and applied biological sciences. Psychology Golgi Apparatus - metabolism HeLa Cells Humans Intracellular Membranes - metabolism Lectins Ligands Mice Microbiology RATON Receptors, Transferrin - metabolism SOURIS |
title | The late chlamydial inclusion membrane is not derived from the endocytic pathway and is relatively deficient in host proteins |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T06%3A15%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20late%20chlamydial%20inclusion%20membrane%20is%20not%20derived%20from%20the%20endocytic%20pathway%20and%20is%20relatively%20deficient%20in%20host%20proteins&rft.jtitle=Infection%20and%20Immunity&rft.au=Taraska,%20T.%20(University%20of%20Utah,%20Salt%20Lake%20City.)&rft.date=1996-09-01&rft.volume=64&rft.issue=9&rft.spage=3713&rft.epage=3727&rft.pages=3713-3727&rft.issn=0019-9567&rft.eissn=1098-5522&rft.coden=INFIBR&rft_id=info:doi/10.1128/IAI.64.9.3713-3727.1996&rft_dat=%3Cproquest_pasca%3E78269884%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=15642839&rft_id=info:pmid/8751921&rfr_iscdi=true |