The late chlamydial inclusion membrane is not derived from the endocytic pathway and is relatively deficient in host proteins

Chlamydiae are obligate intracellular parasites which multiply within infected cells in a membrane-bound structure termed an inclusion. Newly internalized bacteria are surrounded by host plasma membrane; however, the source of membrane for the expansion of the inclusion is unknown. To determine if t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Infection and Immunity 1996-09, Vol.64 (9), p.3713-3727
Hauptverfasser: Taraska, T. (University of Utah, Salt Lake City.), Ward, D.M, Ajioka, R.S, Wyrick, P.B, Davis-Kaplan, S.R, Davis, C.H, Kaplan, J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3727
container_issue 9
container_start_page 3713
container_title Infection and Immunity
container_volume 64
creator Taraska, T. (University of Utah, Salt Lake City.)
Ward, D.M
Ajioka, R.S
Wyrick, P.B
Davis-Kaplan, S.R
Davis, C.H
Kaplan, J
description Chlamydiae are obligate intracellular parasites which multiply within infected cells in a membrane-bound structure termed an inclusion. Newly internalized bacteria are surrounded by host plasma membrane; however, the source of membrane for the expansion of the inclusion is unknown. To determine if the membrane for the mature inclusion was derived by fusion with cellular organelles, we stained infected cells with fluorescent or electron-dense markers specific for organelles and examined inclusions for those markers. We observed no evidence for the presence of endoplasmic reticulum, Golgi, late endosomal, or lysosomal proteins in the inclusion. These data suggest that the expansion of the inclusion membrane, beginning 24 h postinoculation, does not occur by the addition of host proteins resulting from either de novo host synthesis or by fusion with preexisting membranes. To determine the source of the expanding inclusion membrane, antibodies were produced against isolated membranes from Chlamydia-infected mouse cells. The antibodies were demonstrated to be solely against Chlamydia-specified proteins by both immunoprecipitation of [35S]methionine-labeled extracts and Western blotting (immunoblotting). Techniques were used to semipermeabilize Chlamydia-infected cells without disrupting the permeability of the inclusion, allowing antibodies access to the outer surface of the inclusion membrane. Immunofluorescent staining demonstrated a ring-like fluorescence around inclusions in semipermeabilized cells, whereas Triton X-100-permeabilized cells showed staining throughout the inclusion. These studies demonstrate that the inclusion membrane is made up, in part, of Chlamydia-specified proteins and not of existing host membrane proteins
doi_str_mv 10.1128/IAI.64.9.3713-3727.1996
format Article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_3202125</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>78269884</sourcerecordid><originalsourceid>FETCH-LOGICAL-c570t-baea58c5be1a2c223e2a540a2144c155ef79998f55ef3a665909ec772054ad033</originalsourceid><addsrcrecordid>eNqFkU9v1DAQxSMEKkvhCyAhjIS4ZbGdOLYPPVQVf1aqxIH2bM06k42REy92tlUOfHcc7WpFT5xsa37vzYxfUbxndM0YV58315t1U6_1upKsKivJ5Zpp3TwrVoxqVQrB-fNiRSnTpRaNfFm8SulXftZ1rS6KCyUF05ytij93PRIPExLbexjm1oEnbrT-kFwYyYDDNsKIxCUyhom0GN0DtqSLYSBTluLYBjtPzpI9TP0jzATGdqEjZtfM-jmLOmcdjlM2Jn1IE9nHMKEb0-viRQc-4ZvTeVncf_1yd_O9vP3xbXNzfVtaIelUbgFBKCu2yIBbzivkIGoKPK9jmRDYSa216pZbBU0jNNVopeRU1NDSqrosro6--8N2wNbmWSJ4s49ugDibAM48rYyuN7vwYJisuRJZ_-mkj-H3AdNkBpcsep-_JhySkYo3Wqn6vyATTTasdAblEbQxpBSxOw_DqFkSNi4P1dRGmyVhsyRsloSz8t2_u5x1p0hz_eOpDsmC73J81qUzVnHKGV9W-nDEerfrH11EA2l42jQzb49MB8HALmab-59acsVFU_0FzwvF2Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>15642839</pqid></control><display><type>article</type><title>The late chlamydial inclusion membrane is not derived from the endocytic pathway and is relatively deficient in host proteins</title><source>American Society for Microbiology</source><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Taraska, T. (University of Utah, Salt Lake City.) ; Ward, D.M ; Ajioka, R.S ; Wyrick, P.B ; Davis-Kaplan, S.R ; Davis, C.H ; Kaplan, J</creator><creatorcontrib>Taraska, T. (University of Utah, Salt Lake City.) ; Ward, D.M ; Ajioka, R.S ; Wyrick, P.B ; Davis-Kaplan, S.R ; Davis, C.H ; Kaplan, J</creatorcontrib><description>Chlamydiae are obligate intracellular parasites which multiply within infected cells in a membrane-bound structure termed an inclusion. Newly internalized bacteria are surrounded by host plasma membrane; however, the source of membrane for the expansion of the inclusion is unknown. To determine if the membrane for the mature inclusion was derived by fusion with cellular organelles, we stained infected cells with fluorescent or electron-dense markers specific for organelles and examined inclusions for those markers. We observed no evidence for the presence of endoplasmic reticulum, Golgi, late endosomal, or lysosomal proteins in the inclusion. These data suggest that the expansion of the inclusion membrane, beginning 24 h postinoculation, does not occur by the addition of host proteins resulting from either de novo host synthesis or by fusion with preexisting membranes. To determine the source of the expanding inclusion membrane, antibodies were produced against isolated membranes from Chlamydia-infected mouse cells. The antibodies were demonstrated to be solely against Chlamydia-specified proteins by both immunoprecipitation of [35S]methionine-labeled extracts and Western blotting (immunoblotting). Techniques were used to semipermeabilize Chlamydia-infected cells without disrupting the permeability of the inclusion, allowing antibodies access to the outer surface of the inclusion membrane. Immunofluorescent staining demonstrated a ring-like fluorescence around inclusions in semipermeabilized cells, whereas Triton X-100-permeabilized cells showed staining throughout the inclusion. These studies demonstrate that the inclusion membrane is made up, in part, of Chlamydia-specified proteins and not of existing host membrane proteins</description><identifier>ISSN: 0019-9567</identifier><identifier>EISSN: 1098-5522</identifier><identifier>DOI: 10.1128/IAI.64.9.3713-3727.1996</identifier><identifier>PMID: 8751921</identifier><identifier>CODEN: INFIBR</identifier><language>eng</language><publisher>Washington, DC: American Society for Microbiology</publisher><subject>3T3 Cells ; Animals ; Antibodies, Bacterial ; Antigens, Bacterial - metabolism ; Bacterial Proteins - metabolism ; Bacteriology ; Biogenesis of cell structures, supramolecular organization ; Biological and medical sciences ; Cell Membrane - metabolism ; Cells, Cultured ; CHLAMYDIA ; Chlamydia Infections - microbiology ; Chlamydia Infections - pathology ; Chlamydia trachomatis - ultrastructure ; Chlamydophila psittaci - ultrastructure ; Dogs ; Endocytosis ; Endoplasmic Reticulum - metabolism ; Fluorescent Antibody Technique, Indirect ; Fundamental and applied biological sciences. Psychology ; Golgi Apparatus - metabolism ; HeLa Cells ; Humans ; Intracellular Membranes - metabolism ; Lectins ; Ligands ; Mice ; Microbiology ; RATON ; Receptors, Transferrin - metabolism ; SOURIS</subject><ispartof>Infection and Immunity, 1996-09, Vol.64 (9), p.3713-3727</ispartof><rights>1996 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c570t-baea58c5be1a2c223e2a540a2144c155ef79998f55ef3a665909ec772054ad033</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC174285/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC174285/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,3175,3176,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3202125$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/8751921$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Taraska, T. (University of Utah, Salt Lake City.)</creatorcontrib><creatorcontrib>Ward, D.M</creatorcontrib><creatorcontrib>Ajioka, R.S</creatorcontrib><creatorcontrib>Wyrick, P.B</creatorcontrib><creatorcontrib>Davis-Kaplan, S.R</creatorcontrib><creatorcontrib>Davis, C.H</creatorcontrib><creatorcontrib>Kaplan, J</creatorcontrib><title>The late chlamydial inclusion membrane is not derived from the endocytic pathway and is relatively deficient in host proteins</title><title>Infection and Immunity</title><addtitle>Infect Immun</addtitle><description>Chlamydiae are obligate intracellular parasites which multiply within infected cells in a membrane-bound structure termed an inclusion. Newly internalized bacteria are surrounded by host plasma membrane; however, the source of membrane for the expansion of the inclusion is unknown. To determine if the membrane for the mature inclusion was derived by fusion with cellular organelles, we stained infected cells with fluorescent or electron-dense markers specific for organelles and examined inclusions for those markers. We observed no evidence for the presence of endoplasmic reticulum, Golgi, late endosomal, or lysosomal proteins in the inclusion. These data suggest that the expansion of the inclusion membrane, beginning 24 h postinoculation, does not occur by the addition of host proteins resulting from either de novo host synthesis or by fusion with preexisting membranes. To determine the source of the expanding inclusion membrane, antibodies were produced against isolated membranes from Chlamydia-infected mouse cells. The antibodies were demonstrated to be solely against Chlamydia-specified proteins by both immunoprecipitation of [35S]methionine-labeled extracts and Western blotting (immunoblotting). Techniques were used to semipermeabilize Chlamydia-infected cells without disrupting the permeability of the inclusion, allowing antibodies access to the outer surface of the inclusion membrane. Immunofluorescent staining demonstrated a ring-like fluorescence around inclusions in semipermeabilized cells, whereas Triton X-100-permeabilized cells showed staining throughout the inclusion. These studies demonstrate that the inclusion membrane is made up, in part, of Chlamydia-specified proteins and not of existing host membrane proteins</description><subject>3T3 Cells</subject><subject>Animals</subject><subject>Antibodies, Bacterial</subject><subject>Antigens, Bacterial - metabolism</subject><subject>Bacterial Proteins - metabolism</subject><subject>Bacteriology</subject><subject>Biogenesis of cell structures, supramolecular organization</subject><subject>Biological and medical sciences</subject><subject>Cell Membrane - metabolism</subject><subject>Cells, Cultured</subject><subject>CHLAMYDIA</subject><subject>Chlamydia Infections - microbiology</subject><subject>Chlamydia Infections - pathology</subject><subject>Chlamydia trachomatis - ultrastructure</subject><subject>Chlamydophila psittaci - ultrastructure</subject><subject>Dogs</subject><subject>Endocytosis</subject><subject>Endoplasmic Reticulum - metabolism</subject><subject>Fluorescent Antibody Technique, Indirect</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Golgi Apparatus - metabolism</subject><subject>HeLa Cells</subject><subject>Humans</subject><subject>Intracellular Membranes - metabolism</subject><subject>Lectins</subject><subject>Ligands</subject><subject>Mice</subject><subject>Microbiology</subject><subject>RATON</subject><subject>Receptors, Transferrin - metabolism</subject><subject>SOURIS</subject><issn>0019-9567</issn><issn>1098-5522</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU9v1DAQxSMEKkvhCyAhjIS4ZbGdOLYPPVQVf1aqxIH2bM06k42REy92tlUOfHcc7WpFT5xsa37vzYxfUbxndM0YV58315t1U6_1upKsKivJ5Zpp3TwrVoxqVQrB-fNiRSnTpRaNfFm8SulXftZ1rS6KCyUF05ytij93PRIPExLbexjm1oEnbrT-kFwYyYDDNsKIxCUyhom0GN0DtqSLYSBTluLYBjtPzpI9TP0jzATGdqEjZtfM-jmLOmcdjlM2Jn1IE9nHMKEb0-viRQc-4ZvTeVncf_1yd_O9vP3xbXNzfVtaIelUbgFBKCu2yIBbzivkIGoKPK9jmRDYSa216pZbBU0jNNVopeRU1NDSqrosro6--8N2wNbmWSJ4s49ugDibAM48rYyuN7vwYJisuRJZ_-mkj-H3AdNkBpcsep-_JhySkYo3Wqn6vyATTTasdAblEbQxpBSxOw_DqFkSNi4P1dRGmyVhsyRsloSz8t2_u5x1p0hz_eOpDsmC73J81qUzVnHKGV9W-nDEerfrH11EA2l42jQzb49MB8HALmab-59acsVFU_0FzwvF2Q</recordid><startdate>19960901</startdate><enddate>19960901</enddate><creator>Taraska, T. (University of Utah, Salt Lake City.)</creator><creator>Ward, D.M</creator><creator>Ajioka, R.S</creator><creator>Wyrick, P.B</creator><creator>Davis-Kaplan, S.R</creator><creator>Davis, C.H</creator><creator>Kaplan, J</creator><general>American Society for Microbiology</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>C1K</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19960901</creationdate><title>The late chlamydial inclusion membrane is not derived from the endocytic pathway and is relatively deficient in host proteins</title><author>Taraska, T. (University of Utah, Salt Lake City.) ; Ward, D.M ; Ajioka, R.S ; Wyrick, P.B ; Davis-Kaplan, S.R ; Davis, C.H ; Kaplan, J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c570t-baea58c5be1a2c223e2a540a2144c155ef79998f55ef3a665909ec772054ad033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>3T3 Cells</topic><topic>Animals</topic><topic>Antibodies, Bacterial</topic><topic>Antigens, Bacterial - metabolism</topic><topic>Bacterial Proteins - metabolism</topic><topic>Bacteriology</topic><topic>Biogenesis of cell structures, supramolecular organization</topic><topic>Biological and medical sciences</topic><topic>Cell Membrane - metabolism</topic><topic>Cells, Cultured</topic><topic>CHLAMYDIA</topic><topic>Chlamydia Infections - microbiology</topic><topic>Chlamydia Infections - pathology</topic><topic>Chlamydia trachomatis - ultrastructure</topic><topic>Chlamydophila psittaci - ultrastructure</topic><topic>Dogs</topic><topic>Endocytosis</topic><topic>Endoplasmic Reticulum - metabolism</topic><topic>Fluorescent Antibody Technique, Indirect</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Golgi Apparatus - metabolism</topic><topic>HeLa Cells</topic><topic>Humans</topic><topic>Intracellular Membranes - metabolism</topic><topic>Lectins</topic><topic>Ligands</topic><topic>Mice</topic><topic>Microbiology</topic><topic>RATON</topic><topic>Receptors, Transferrin - metabolism</topic><topic>SOURIS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Taraska, T. (University of Utah, Salt Lake City.)</creatorcontrib><creatorcontrib>Ward, D.M</creatorcontrib><creatorcontrib>Ajioka, R.S</creatorcontrib><creatorcontrib>Wyrick, P.B</creatorcontrib><creatorcontrib>Davis-Kaplan, S.R</creatorcontrib><creatorcontrib>Davis, C.H</creatorcontrib><creatorcontrib>Kaplan, J</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Infection and Immunity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Taraska, T. (University of Utah, Salt Lake City.)</au><au>Ward, D.M</au><au>Ajioka, R.S</au><au>Wyrick, P.B</au><au>Davis-Kaplan, S.R</au><au>Davis, C.H</au><au>Kaplan, J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The late chlamydial inclusion membrane is not derived from the endocytic pathway and is relatively deficient in host proteins</atitle><jtitle>Infection and Immunity</jtitle><addtitle>Infect Immun</addtitle><date>1996-09-01</date><risdate>1996</risdate><volume>64</volume><issue>9</issue><spage>3713</spage><epage>3727</epage><pages>3713-3727</pages><issn>0019-9567</issn><eissn>1098-5522</eissn><coden>INFIBR</coden><abstract>Chlamydiae are obligate intracellular parasites which multiply within infected cells in a membrane-bound structure termed an inclusion. Newly internalized bacteria are surrounded by host plasma membrane; however, the source of membrane for the expansion of the inclusion is unknown. To determine if the membrane for the mature inclusion was derived by fusion with cellular organelles, we stained infected cells with fluorescent or electron-dense markers specific for organelles and examined inclusions for those markers. We observed no evidence for the presence of endoplasmic reticulum, Golgi, late endosomal, or lysosomal proteins in the inclusion. These data suggest that the expansion of the inclusion membrane, beginning 24 h postinoculation, does not occur by the addition of host proteins resulting from either de novo host synthesis or by fusion with preexisting membranes. To determine the source of the expanding inclusion membrane, antibodies were produced against isolated membranes from Chlamydia-infected mouse cells. The antibodies were demonstrated to be solely against Chlamydia-specified proteins by both immunoprecipitation of [35S]methionine-labeled extracts and Western blotting (immunoblotting). Techniques were used to semipermeabilize Chlamydia-infected cells without disrupting the permeability of the inclusion, allowing antibodies access to the outer surface of the inclusion membrane. Immunofluorescent staining demonstrated a ring-like fluorescence around inclusions in semipermeabilized cells, whereas Triton X-100-permeabilized cells showed staining throughout the inclusion. These studies demonstrate that the inclusion membrane is made up, in part, of Chlamydia-specified proteins and not of existing host membrane proteins</abstract><cop>Washington, DC</cop><pub>American Society for Microbiology</pub><pmid>8751921</pmid><doi>10.1128/IAI.64.9.3713-3727.1996</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0019-9567
ispartof Infection and Immunity, 1996-09, Vol.64 (9), p.3713-3727
issn 0019-9567
1098-5522
language eng
recordid cdi_pascalfrancis_primary_3202125
source American Society for Microbiology; MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects 3T3 Cells
Animals
Antibodies, Bacterial
Antigens, Bacterial - metabolism
Bacterial Proteins - metabolism
Bacteriology
Biogenesis of cell structures, supramolecular organization
Biological and medical sciences
Cell Membrane - metabolism
Cells, Cultured
CHLAMYDIA
Chlamydia Infections - microbiology
Chlamydia Infections - pathology
Chlamydia trachomatis - ultrastructure
Chlamydophila psittaci - ultrastructure
Dogs
Endocytosis
Endoplasmic Reticulum - metabolism
Fluorescent Antibody Technique, Indirect
Fundamental and applied biological sciences. Psychology
Golgi Apparatus - metabolism
HeLa Cells
Humans
Intracellular Membranes - metabolism
Lectins
Ligands
Mice
Microbiology
RATON
Receptors, Transferrin - metabolism
SOURIS
title The late chlamydial inclusion membrane is not derived from the endocytic pathway and is relatively deficient in host proteins
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T06%3A15%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20late%20chlamydial%20inclusion%20membrane%20is%20not%20derived%20from%20the%20endocytic%20pathway%20and%20is%20relatively%20deficient%20in%20host%20proteins&rft.jtitle=Infection%20and%20Immunity&rft.au=Taraska,%20T.%20(University%20of%20Utah,%20Salt%20Lake%20City.)&rft.date=1996-09-01&rft.volume=64&rft.issue=9&rft.spage=3713&rft.epage=3727&rft.pages=3713-3727&rft.issn=0019-9567&rft.eissn=1098-5522&rft.coden=INFIBR&rft_id=info:doi/10.1128/IAI.64.9.3713-3727.1996&rft_dat=%3Cproquest_pasca%3E78269884%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=15642839&rft_id=info:pmid/8751921&rfr_iscdi=true