Fe3O4@SiO2@TiO2@Pt Hierarchical Core–Shell Microspheres: Controlled Synthesis, Enhanced Degradation System, and Rapid Magnetic Separation to Recycle

Magnetic composite microspheres consisting of a SiO2-coated Fe3O4 core, an ordered TiO2 hierarchically structured shell, and a Pt nanoparticle layer dispersed on the surface of the TiO2 nanoplatelets have been successfully synthesized using a facile and efficient method. The shells of TiO2 hierarchi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Crystal growth & design 2014-11, Vol.14 (11), p.5506-5511
Hauptverfasser: Li, Xiyan, Liu, Dapeng, Song, Shuyan, Zhang, Hongjie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5511
container_issue 11
container_start_page 5506
container_title Crystal growth & design
container_volume 14
creator Li, Xiyan
Liu, Dapeng
Song, Shuyan
Zhang, Hongjie
description Magnetic composite microspheres consisting of a SiO2-coated Fe3O4 core, an ordered TiO2 hierarchically structured shell, and a Pt nanoparticle layer dispersed on the surface of the TiO2 nanoplatelets have been successfully synthesized using a facile and efficient method. The shells of TiO2 hierarchical microspheres were assembled from nanoplatelets, which exposed the high-energy {001} facets, and the Pt nanoparticles were evenly deposited on the surface of the TiO2 nanoplatelets, with a concentration of ∼1 wt %. The resulting composite microspheres exhibited flower-like hierarchical structures with a 202.42 m2 g–1 surface area and possessed superparamagnetic properties with a high saturation magnetization of 31.5 emu g–1. These features endow the obtained composite microspheres with a high adsorption capacity and strong magnetic responsivity that could be easily separated by an external magnetic field. The high photocatalytic activity toward Rhodamine B (RhB) degradation may be caused by the hierarchically structured TiO2 with exposed high-energy {001} facets and the Pt nanoparticle deposits on TiO2 surfaces, which would be efficient for the electron transfer reactions. In addition, the composite microspheres showed high recycling efficiency and stability over several separation cycles.
doi_str_mv 10.1021/cg501164c
format Article
fullrecord <record><control><sourceid>acs_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_29041647</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c229537694</sourcerecordid><originalsourceid>FETCH-LOGICAL-a215t-cac3094ca645fb2fc1ae48f5d2cf5585e2860bc4916e781772b639d04d33f2043</originalsourceid><addsrcrecordid>eNpFkMtOwlAQhhujiYgufIOzcUf1XHtxhUEQEwiG4roZTqf0kNI259QFO9_BxAf0SSzBy2ZmMv-fyT-f510zessoZ3d6oyhjgdQnXo8pHvmhour0d5aROPcunNtSSsNAiJ73OUGxkMPELPhwdSgvLZkatGB1YTSUZFRb_Hr_SAosSzI32tauKdCiu--kqrV1WWJGkn3VFuiMG5BxVUClu90jbixk0Jq66nTX4m5AoMrIEhqTkTlsKmyNJgk2YI-utiZL1Htd4qV3lkPp8Oqn973XyXg1mvqzxdPz6GHmA2eq9TVoQWOpIZAqX_NcM0AZ5SrjOlcqUsijgK61jFmAYcTCkK8DEWdUZkLknErR926Odxtw3be57aIblzbW7MDuUx5T2cEM_32gXbqt32zVpUoZTQ_Q0z_o4hsvfHWi</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Fe3O4@SiO2@TiO2@Pt Hierarchical Core–Shell Microspheres: Controlled Synthesis, Enhanced Degradation System, and Rapid Magnetic Separation to Recycle</title><source>ACS Publications</source><creator>Li, Xiyan ; Liu, Dapeng ; Song, Shuyan ; Zhang, Hongjie</creator><creatorcontrib>Li, Xiyan ; Liu, Dapeng ; Song, Shuyan ; Zhang, Hongjie</creatorcontrib><description>Magnetic composite microspheres consisting of a SiO2-coated Fe3O4 core, an ordered TiO2 hierarchically structured shell, and a Pt nanoparticle layer dispersed on the surface of the TiO2 nanoplatelets have been successfully synthesized using a facile and efficient method. The shells of TiO2 hierarchical microspheres were assembled from nanoplatelets, which exposed the high-energy {001} facets, and the Pt nanoparticles were evenly deposited on the surface of the TiO2 nanoplatelets, with a concentration of ∼1 wt %. The resulting composite microspheres exhibited flower-like hierarchical structures with a 202.42 m2 g–1 surface area and possessed superparamagnetic properties with a high saturation magnetization of 31.5 emu g–1. These features endow the obtained composite microspheres with a high adsorption capacity and strong magnetic responsivity that could be easily separated by an external magnetic field. The high photocatalytic activity toward Rhodamine B (RhB) degradation may be caused by the hierarchically structured TiO2 with exposed high-energy {001} facets and the Pt nanoparticle deposits on TiO2 surfaces, which would be efficient for the electron transfer reactions. In addition, the composite microspheres showed high recycling efficiency and stability over several separation cycles.</description><identifier>ISSN: 1528-7483</identifier><identifier>EISSN: 1528-7505</identifier><identifier>DOI: 10.1021/cg501164c</identifier><language>eng</language><publisher>Washington,DC: American Chemical Society</publisher><subject>Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Exact sciences and technology ; Materials science ; Nanoscale materials and structures: fabrication and characterization ; Other topics in nanoscale materials and structures ; Physics ; Solid surfaces and solid-solid interfaces ; Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><ispartof>Crystal growth &amp; design, 2014-11, Vol.14 (11), p.5506-5511</ispartof><rights>Copyright © 2014 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/cg501164c$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/cg501164c$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,781,785,27081,27929,27930,56743,56793</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=29041647$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Xiyan</creatorcontrib><creatorcontrib>Liu, Dapeng</creatorcontrib><creatorcontrib>Song, Shuyan</creatorcontrib><creatorcontrib>Zhang, Hongjie</creatorcontrib><title>Fe3O4@SiO2@TiO2@Pt Hierarchical Core–Shell Microspheres: Controlled Synthesis, Enhanced Degradation System, and Rapid Magnetic Separation to Recycle</title><title>Crystal growth &amp; design</title><addtitle>Cryst. Growth Des</addtitle><description>Magnetic composite microspheres consisting of a SiO2-coated Fe3O4 core, an ordered TiO2 hierarchically structured shell, and a Pt nanoparticle layer dispersed on the surface of the TiO2 nanoplatelets have been successfully synthesized using a facile and efficient method. The shells of TiO2 hierarchical microspheres were assembled from nanoplatelets, which exposed the high-energy {001} facets, and the Pt nanoparticles were evenly deposited on the surface of the TiO2 nanoplatelets, with a concentration of ∼1 wt %. The resulting composite microspheres exhibited flower-like hierarchical structures with a 202.42 m2 g–1 surface area and possessed superparamagnetic properties with a high saturation magnetization of 31.5 emu g–1. These features endow the obtained composite microspheres with a high adsorption capacity and strong magnetic responsivity that could be easily separated by an external magnetic field. The high photocatalytic activity toward Rhodamine B (RhB) degradation may be caused by the hierarchically structured TiO2 with exposed high-energy {001} facets and the Pt nanoparticle deposits on TiO2 surfaces, which would be efficient for the electron transfer reactions. In addition, the composite microspheres showed high recycling efficiency and stability over several separation cycles.</description><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Exact sciences and technology</subject><subject>Materials science</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Other topics in nanoscale materials and structures</subject><subject>Physics</subject><subject>Solid surfaces and solid-solid interfaces</subject><subject>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><issn>1528-7483</issn><issn>1528-7505</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpFkMtOwlAQhhujiYgufIOzcUf1XHtxhUEQEwiG4roZTqf0kNI259QFO9_BxAf0SSzBy2ZmMv-fyT-f510zessoZ3d6oyhjgdQnXo8pHvmhour0d5aROPcunNtSSsNAiJ73OUGxkMPELPhwdSgvLZkatGB1YTSUZFRb_Hr_SAosSzI32tauKdCiu--kqrV1WWJGkn3VFuiMG5BxVUClu90jbixk0Jq66nTX4m5AoMrIEhqTkTlsKmyNJgk2YI-utiZL1Htd4qV3lkPp8Oqn973XyXg1mvqzxdPz6GHmA2eq9TVoQWOpIZAqX_NcM0AZ5SrjOlcqUsijgK61jFmAYcTCkK8DEWdUZkLknErR926Odxtw3be57aIblzbW7MDuUx5T2cEM_32gXbqt32zVpUoZTQ_Q0z_o4hsvfHWi</recordid><startdate>20141105</startdate><enddate>20141105</enddate><creator>Li, Xiyan</creator><creator>Liu, Dapeng</creator><creator>Song, Shuyan</creator><creator>Zhang, Hongjie</creator><general>American Chemical Society</general><scope>IQODW</scope></search><sort><creationdate>20141105</creationdate><title>Fe3O4@SiO2@TiO2@Pt Hierarchical Core–Shell Microspheres: Controlled Synthesis, Enhanced Degradation System, and Rapid Magnetic Separation to Recycle</title><author>Li, Xiyan ; Liu, Dapeng ; Song, Shuyan ; Zhang, Hongjie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a215t-cac3094ca645fb2fc1ae48f5d2cf5585e2860bc4916e781772b639d04d33f2043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Exact sciences and technology</topic><topic>Materials science</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Other topics in nanoscale materials and structures</topic><topic>Physics</topic><topic>Solid surfaces and solid-solid interfaces</topic><topic>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Xiyan</creatorcontrib><creatorcontrib>Liu, Dapeng</creatorcontrib><creatorcontrib>Song, Shuyan</creatorcontrib><creatorcontrib>Zhang, Hongjie</creatorcontrib><collection>Pascal-Francis</collection><jtitle>Crystal growth &amp; design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Xiyan</au><au>Liu, Dapeng</au><au>Song, Shuyan</au><au>Zhang, Hongjie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fe3O4@SiO2@TiO2@Pt Hierarchical Core–Shell Microspheres: Controlled Synthesis, Enhanced Degradation System, and Rapid Magnetic Separation to Recycle</atitle><jtitle>Crystal growth &amp; design</jtitle><addtitle>Cryst. Growth Des</addtitle><date>2014-11-05</date><risdate>2014</risdate><volume>14</volume><issue>11</issue><spage>5506</spage><epage>5511</epage><pages>5506-5511</pages><issn>1528-7483</issn><eissn>1528-7505</eissn><abstract>Magnetic composite microspheres consisting of a SiO2-coated Fe3O4 core, an ordered TiO2 hierarchically structured shell, and a Pt nanoparticle layer dispersed on the surface of the TiO2 nanoplatelets have been successfully synthesized using a facile and efficient method. The shells of TiO2 hierarchical microspheres were assembled from nanoplatelets, which exposed the high-energy {001} facets, and the Pt nanoparticles were evenly deposited on the surface of the TiO2 nanoplatelets, with a concentration of ∼1 wt %. The resulting composite microspheres exhibited flower-like hierarchical structures with a 202.42 m2 g–1 surface area and possessed superparamagnetic properties with a high saturation magnetization of 31.5 emu g–1. These features endow the obtained composite microspheres with a high adsorption capacity and strong magnetic responsivity that could be easily separated by an external magnetic field. The high photocatalytic activity toward Rhodamine B (RhB) degradation may be caused by the hierarchically structured TiO2 with exposed high-energy {001} facets and the Pt nanoparticle deposits on TiO2 surfaces, which would be efficient for the electron transfer reactions. In addition, the composite microspheres showed high recycling efficiency and stability over several separation cycles.</abstract><cop>Washington,DC</cop><pub>American Chemical Society</pub><doi>10.1021/cg501164c</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1528-7483
ispartof Crystal growth & design, 2014-11, Vol.14 (11), p.5506-5511
issn 1528-7483
1528-7505
language eng
recordid cdi_pascalfrancis_primary_29041647
source ACS Publications
subjects Condensed matter: structure, mechanical and thermal properties
Cross-disciplinary physics: materials science
rheology
Exact sciences and technology
Materials science
Nanoscale materials and structures: fabrication and characterization
Other topics in nanoscale materials and structures
Physics
Solid surfaces and solid-solid interfaces
Surfaces and interfaces
thin films and whiskers (structure and nonelectronic properties)
title Fe3O4@SiO2@TiO2@Pt Hierarchical Core–Shell Microspheres: Controlled Synthesis, Enhanced Degradation System, and Rapid Magnetic Separation to Recycle
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T17%3A09%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fe3O4@SiO2@TiO2@Pt%20Hierarchical%20Core%E2%80%93Shell%20Microspheres:%20Controlled%20Synthesis,%20Enhanced%20Degradation%20System,%20and%20Rapid%20Magnetic%20Separation%20to%20Recycle&rft.jtitle=Crystal%20growth%20&%20design&rft.au=Li,%20Xiyan&rft.date=2014-11-05&rft.volume=14&rft.issue=11&rft.spage=5506&rft.epage=5511&rft.pages=5506-5511&rft.issn=1528-7483&rft.eissn=1528-7505&rft_id=info:doi/10.1021/cg501164c&rft_dat=%3Cacs_pasca%3Ec229537694%3C/acs_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true