Thermal management of thermoacoustic sound projectors using a free-standing carbon nanotube aerogel sheet as a heat source
Carbon nanotube (CNT) aerogel sheets produce smooth-spectra sound over a wide frequency range (1-105 Hz) by means of thermoacoustic (TA) sound generation. Protective encapsulation of CNT sheets in inert gases between rigid vibrating plates provides resonant features for the TA sound projector and at...
Gespeichert in:
Veröffentlicht in: | Nanotechnology 2014-10, Vol.25 (40), p.405704-11 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11 |
---|---|
container_issue | 40 |
container_start_page | 405704 |
container_title | Nanotechnology |
container_volume | 25 |
creator | Aliev, Ali E Mayo, Nathanael K Baughman, Ray H Avirovik, Dragan Priya, Shashank Zarnetske, Michael R Blottman, John B |
description | Carbon nanotube (CNT) aerogel sheets produce smooth-spectra sound over a wide frequency range (1-105 Hz) by means of thermoacoustic (TA) sound generation. Protective encapsulation of CNT sheets in inert gases between rigid vibrating plates provides resonant features for the TA sound projector and attractive performance at needed low frequencies. Energy conversion efficiencies in air of 2% and 10% underwater, which can be enhanced by further increasing the modulation temperature. Using a developed method for accurate temperature measurements for the thin aerogel CNT sheets, heat dissipation processes, failure mechanisms, and associated power densities are investigated for encapsulated multilayered CNT TA heaters and related to the thermal diffusivity distance when sheet layers are separated. Resulting thermal management methods for high applied power are discussed and deployed to construct efficient and tunable underwater sound projector for operation at relatively low frequencies, 10 Hz-10 kHz. The optimal design of these TA projectors for high-power SONAR arrays is discussed. |
doi_str_mv | 10.1088/0957-4484/25/40/405704 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_28838590</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1642276233</sourcerecordid><originalsourceid>FETCH-LOGICAL-c484t-cad28b22ca3abac6010be5802a53b9d3f1c10f19b14825b3766ffbe653f8c5373</originalsourceid><addsrcrecordid>eNqFkU9r3DAQxU1pabZpv0LQpdAe3NUfS9YeQ2jTQkgu6VmM5NGuF1vaSvah-fSV2U1KobAgEBK_N_NmXlVdMfqFUa3XdCPbuml0s-Zy3dByZEubV9WKCcVqJbl-Xa1eoIvqXc57ShnTnL2tLrjkhZN6VT097jCNMJARAmxxxDCR6Mm0_EZwcc5T70iOc-jIIcU9uimmTObchy0B4hNinScI3fJ2kGwMJECI02yRAKa4xYHkHeJEIBfBDmFayiWH76s3HoaMH073ZfXz29fHm-_13cPtj5vru9oV51PtoOPacu5AgAWnKKMWpaYcpLCbTnjmGPVsY1mjubSiVcp7i0oKr50UrbisPh3rFv-_ZsyTGfvscBggYJnPsFZwzTUT9DyqGs5bxYU4j0rFVSF5U1B1RF2KOSf05pD6EdJvw6hZ0jRLUGYJynBpGmqOaRbh1anHbEfsXmTP8RXg4wmA7GDwCYLr819Oa6HlZpnr85Hr48Hsy_ZDWbi5v75_-KehOXS-sPw_7BmnfwBVK8SO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1562662324</pqid></control><display><type>article</type><title>Thermal management of thermoacoustic sound projectors using a free-standing carbon nanotube aerogel sheet as a heat source</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Aliev, Ali E ; Mayo, Nathanael K ; Baughman, Ray H ; Avirovik, Dragan ; Priya, Shashank ; Zarnetske, Michael R ; Blottman, John B</creator><creatorcontrib>Aliev, Ali E ; Mayo, Nathanael K ; Baughman, Ray H ; Avirovik, Dragan ; Priya, Shashank ; Zarnetske, Michael R ; Blottman, John B</creatorcontrib><description>Carbon nanotube (CNT) aerogel sheets produce smooth-spectra sound over a wide frequency range (1-105 Hz) by means of thermoacoustic (TA) sound generation. Protective encapsulation of CNT sheets in inert gases between rigid vibrating plates provides resonant features for the TA sound projector and attractive performance at needed low frequencies. Energy conversion efficiencies in air of 2% and 10% underwater, which can be enhanced by further increasing the modulation temperature. Using a developed method for accurate temperature measurements for the thin aerogel CNT sheets, heat dissipation processes, failure mechanisms, and associated power densities are investigated for encapsulated multilayered CNT TA heaters and related to the thermal diffusivity distance when sheet layers are separated. Resulting thermal management methods for high applied power are discussed and deployed to construct efficient and tunable underwater sound projector for operation at relatively low frequencies, 10 Hz-10 kHz. The optimal design of these TA projectors for high-power SONAR arrays is discussed.</description><identifier>ISSN: 0957-4484</identifier><identifier>EISSN: 1361-6528</identifier><identifier>DOI: 10.1088/0957-4484/25/40/405704</identifier><identifier>PMID: 25213658</identifier><identifier>CODEN: NNOTER</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Aerogels ; Carbon nanotubes ; Cross-disciplinary physics: materials science; rheology ; Encapsulation ; Exact sciences and technology ; Kirchhoff's law ; Low frequencies ; Materials science ; Nanocrystalline materials ; Nanoscale materials and structures: fabrication and characterization ; Nanotubes ; Physics ; Projectors ; Sound ; Thermal management ; Thermoacoustics</subject><ispartof>Nanotechnology, 2014-10, Vol.25 (40), p.405704-11</ispartof><rights>2014 IOP Publishing Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c484t-cad28b22ca3abac6010be5802a53b9d3f1c10f19b14825b3766ffbe653f8c5373</citedby><cites>FETCH-LOGICAL-c484t-cad28b22ca3abac6010be5802a53b9d3f1c10f19b14825b3766ffbe653f8c5373</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/0957-4484/25/40/405704/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,778,782,27911,27912,53833,53880</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28838590$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25213658$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Aliev, Ali E</creatorcontrib><creatorcontrib>Mayo, Nathanael K</creatorcontrib><creatorcontrib>Baughman, Ray H</creatorcontrib><creatorcontrib>Avirovik, Dragan</creatorcontrib><creatorcontrib>Priya, Shashank</creatorcontrib><creatorcontrib>Zarnetske, Michael R</creatorcontrib><creatorcontrib>Blottman, John B</creatorcontrib><title>Thermal management of thermoacoustic sound projectors using a free-standing carbon nanotube aerogel sheet as a heat source</title><title>Nanotechnology</title><addtitle>NANO</addtitle><addtitle>Nanotechnology</addtitle><description>Carbon nanotube (CNT) aerogel sheets produce smooth-spectra sound over a wide frequency range (1-105 Hz) by means of thermoacoustic (TA) sound generation. Protective encapsulation of CNT sheets in inert gases between rigid vibrating plates provides resonant features for the TA sound projector and attractive performance at needed low frequencies. Energy conversion efficiencies in air of 2% and 10% underwater, which can be enhanced by further increasing the modulation temperature. Using a developed method for accurate temperature measurements for the thin aerogel CNT sheets, heat dissipation processes, failure mechanisms, and associated power densities are investigated for encapsulated multilayered CNT TA heaters and related to the thermal diffusivity distance when sheet layers are separated. Resulting thermal management methods for high applied power are discussed and deployed to construct efficient and tunable underwater sound projector for operation at relatively low frequencies, 10 Hz-10 kHz. The optimal design of these TA projectors for high-power SONAR arrays is discussed.</description><subject>Aerogels</subject><subject>Carbon nanotubes</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Encapsulation</subject><subject>Exact sciences and technology</subject><subject>Kirchhoff's law</subject><subject>Low frequencies</subject><subject>Materials science</subject><subject>Nanocrystalline materials</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Nanotubes</subject><subject>Physics</subject><subject>Projectors</subject><subject>Sound</subject><subject>Thermal management</subject><subject>Thermoacoustics</subject><issn>0957-4484</issn><issn>1361-6528</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkU9r3DAQxU1pabZpv0LQpdAe3NUfS9YeQ2jTQkgu6VmM5NGuF1vaSvah-fSV2U1KobAgEBK_N_NmXlVdMfqFUa3XdCPbuml0s-Zy3dByZEubV9WKCcVqJbl-Xa1eoIvqXc57ShnTnL2tLrjkhZN6VT097jCNMJARAmxxxDCR6Mm0_EZwcc5T70iOc-jIIcU9uimmTObchy0B4hNinScI3fJ2kGwMJECI02yRAKa4xYHkHeJEIBfBDmFayiWH76s3HoaMH073ZfXz29fHm-_13cPtj5vru9oV51PtoOPacu5AgAWnKKMWpaYcpLCbTnjmGPVsY1mjubSiVcp7i0oKr50UrbisPh3rFv-_ZsyTGfvscBggYJnPsFZwzTUT9DyqGs5bxYU4j0rFVSF5U1B1RF2KOSf05pD6EdJvw6hZ0jRLUGYJynBpGmqOaRbh1anHbEfsXmTP8RXg4wmA7GDwCYLr819Oa6HlZpnr85Hr48Hsy_ZDWbi5v75_-KehOXS-sPw_7BmnfwBVK8SO</recordid><startdate>20141010</startdate><enddate>20141010</enddate><creator>Aliev, Ali E</creator><creator>Mayo, Nathanael K</creator><creator>Baughman, Ray H</creator><creator>Avirovik, Dragan</creator><creator>Priya, Shashank</creator><creator>Zarnetske, Michael R</creator><creator>Blottman, John B</creator><general>IOP Publishing</general><general>Institute of Physics</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope></search><sort><creationdate>20141010</creationdate><title>Thermal management of thermoacoustic sound projectors using a free-standing carbon nanotube aerogel sheet as a heat source</title><author>Aliev, Ali E ; Mayo, Nathanael K ; Baughman, Ray H ; Avirovik, Dragan ; Priya, Shashank ; Zarnetske, Michael R ; Blottman, John B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c484t-cad28b22ca3abac6010be5802a53b9d3f1c10f19b14825b3766ffbe653f8c5373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Aerogels</topic><topic>Carbon nanotubes</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Encapsulation</topic><topic>Exact sciences and technology</topic><topic>Kirchhoff's law</topic><topic>Low frequencies</topic><topic>Materials science</topic><topic>Nanocrystalline materials</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Nanotubes</topic><topic>Physics</topic><topic>Projectors</topic><topic>Sound</topic><topic>Thermal management</topic><topic>Thermoacoustics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aliev, Ali E</creatorcontrib><creatorcontrib>Mayo, Nathanael K</creatorcontrib><creatorcontrib>Baughman, Ray H</creatorcontrib><creatorcontrib>Avirovik, Dragan</creatorcontrib><creatorcontrib>Priya, Shashank</creatorcontrib><creatorcontrib>Zarnetske, Michael R</creatorcontrib><creatorcontrib>Blottman, John B</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aliev, Ali E</au><au>Mayo, Nathanael K</au><au>Baughman, Ray H</au><au>Avirovik, Dragan</au><au>Priya, Shashank</au><au>Zarnetske, Michael R</au><au>Blottman, John B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal management of thermoacoustic sound projectors using a free-standing carbon nanotube aerogel sheet as a heat source</atitle><jtitle>Nanotechnology</jtitle><stitle>NANO</stitle><addtitle>Nanotechnology</addtitle><date>2014-10-10</date><risdate>2014</risdate><volume>25</volume><issue>40</issue><spage>405704</spage><epage>11</epage><pages>405704-11</pages><issn>0957-4484</issn><eissn>1361-6528</eissn><coden>NNOTER</coden><abstract>Carbon nanotube (CNT) aerogel sheets produce smooth-spectra sound over a wide frequency range (1-105 Hz) by means of thermoacoustic (TA) sound generation. Protective encapsulation of CNT sheets in inert gases between rigid vibrating plates provides resonant features for the TA sound projector and attractive performance at needed low frequencies. Energy conversion efficiencies in air of 2% and 10% underwater, which can be enhanced by further increasing the modulation temperature. Using a developed method for accurate temperature measurements for the thin aerogel CNT sheets, heat dissipation processes, failure mechanisms, and associated power densities are investigated for encapsulated multilayered CNT TA heaters and related to the thermal diffusivity distance when sheet layers are separated. Resulting thermal management methods for high applied power are discussed and deployed to construct efficient and tunable underwater sound projector for operation at relatively low frequencies, 10 Hz-10 kHz. The optimal design of these TA projectors for high-power SONAR arrays is discussed.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><pmid>25213658</pmid><doi>10.1088/0957-4484/25/40/405704</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4484 |
ispartof | Nanotechnology, 2014-10, Vol.25 (40), p.405704-11 |
issn | 0957-4484 1361-6528 |
language | eng |
recordid | cdi_pascalfrancis_primary_28838590 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | Aerogels Carbon nanotubes Cross-disciplinary physics: materials science rheology Encapsulation Exact sciences and technology Kirchhoff's law Low frequencies Materials science Nanocrystalline materials Nanoscale materials and structures: fabrication and characterization Nanotubes Physics Projectors Sound Thermal management Thermoacoustics |
title | Thermal management of thermoacoustic sound projectors using a free-standing carbon nanotube aerogel sheet as a heat source |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T01%3A10%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20management%20of%20thermoacoustic%20sound%20projectors%20using%20a%20free-standing%20carbon%20nanotube%20aerogel%20sheet%20as%20a%20heat%20source&rft.jtitle=Nanotechnology&rft.au=Aliev,%20Ali%20E&rft.date=2014-10-10&rft.volume=25&rft.issue=40&rft.spage=405704&rft.epage=11&rft.pages=405704-11&rft.issn=0957-4484&rft.eissn=1361-6528&rft.coden=NNOTER&rft_id=info:doi/10.1088/0957-4484/25/40/405704&rft_dat=%3Cproquest_pasca%3E1642276233%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1562662324&rft_id=info:pmid/25213658&rfr_iscdi=true |