Thermal management of thermoacoustic sound projectors using a free-standing carbon nanotube aerogel sheet as a heat source

Carbon nanotube (CNT) aerogel sheets produce smooth-spectra sound over a wide frequency range (1-105 Hz) by means of thermoacoustic (TA) sound generation. Protective encapsulation of CNT sheets in inert gases between rigid vibrating plates provides resonant features for the TA sound projector and at...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanotechnology 2014-10, Vol.25 (40), p.405704-11
Hauptverfasser: Aliev, Ali E, Mayo, Nathanael K, Baughman, Ray H, Avirovik, Dragan, Priya, Shashank, Zarnetske, Michael R, Blottman, John B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11
container_issue 40
container_start_page 405704
container_title Nanotechnology
container_volume 25
creator Aliev, Ali E
Mayo, Nathanael K
Baughman, Ray H
Avirovik, Dragan
Priya, Shashank
Zarnetske, Michael R
Blottman, John B
description Carbon nanotube (CNT) aerogel sheets produce smooth-spectra sound over a wide frequency range (1-105 Hz) by means of thermoacoustic (TA) sound generation. Protective encapsulation of CNT sheets in inert gases between rigid vibrating plates provides resonant features for the TA sound projector and attractive performance at needed low frequencies. Energy conversion efficiencies in air of 2% and 10% underwater, which can be enhanced by further increasing the modulation temperature. Using a developed method for accurate temperature measurements for the thin aerogel CNT sheets, heat dissipation processes, failure mechanisms, and associated power densities are investigated for encapsulated multilayered CNT TA heaters and related to the thermal diffusivity distance when sheet layers are separated. Resulting thermal management methods for high applied power are discussed and deployed to construct efficient and tunable underwater sound projector for operation at relatively low frequencies, 10 Hz-10 kHz. The optimal design of these TA projectors for high-power SONAR arrays is discussed.
doi_str_mv 10.1088/0957-4484/25/40/405704
format Article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_28838590</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1642276233</sourcerecordid><originalsourceid>FETCH-LOGICAL-c484t-cad28b22ca3abac6010be5802a53b9d3f1c10f19b14825b3766ffbe653f8c5373</originalsourceid><addsrcrecordid>eNqFkU9r3DAQxU1pabZpv0LQpdAe3NUfS9YeQ2jTQkgu6VmM5NGuF1vaSvah-fSV2U1KobAgEBK_N_NmXlVdMfqFUa3XdCPbuml0s-Zy3dByZEubV9WKCcVqJbl-Xa1eoIvqXc57ShnTnL2tLrjkhZN6VT097jCNMJARAmxxxDCR6Mm0_EZwcc5T70iOc-jIIcU9uimmTObchy0B4hNinScI3fJ2kGwMJECI02yRAKa4xYHkHeJEIBfBDmFayiWH76s3HoaMH073ZfXz29fHm-_13cPtj5vru9oV51PtoOPacu5AgAWnKKMWpaYcpLCbTnjmGPVsY1mjubSiVcp7i0oKr50UrbisPh3rFv-_ZsyTGfvscBggYJnPsFZwzTUT9DyqGs5bxYU4j0rFVSF5U1B1RF2KOSf05pD6EdJvw6hZ0jRLUGYJynBpGmqOaRbh1anHbEfsXmTP8RXg4wmA7GDwCYLr819Oa6HlZpnr85Hr48Hsy_ZDWbi5v75_-KehOXS-sPw_7BmnfwBVK8SO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1562662324</pqid></control><display><type>article</type><title>Thermal management of thermoacoustic sound projectors using a free-standing carbon nanotube aerogel sheet as a heat source</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Aliev, Ali E ; Mayo, Nathanael K ; Baughman, Ray H ; Avirovik, Dragan ; Priya, Shashank ; Zarnetske, Michael R ; Blottman, John B</creator><creatorcontrib>Aliev, Ali E ; Mayo, Nathanael K ; Baughman, Ray H ; Avirovik, Dragan ; Priya, Shashank ; Zarnetske, Michael R ; Blottman, John B</creatorcontrib><description>Carbon nanotube (CNT) aerogel sheets produce smooth-spectra sound over a wide frequency range (1-105 Hz) by means of thermoacoustic (TA) sound generation. Protective encapsulation of CNT sheets in inert gases between rigid vibrating plates provides resonant features for the TA sound projector and attractive performance at needed low frequencies. Energy conversion efficiencies in air of 2% and 10% underwater, which can be enhanced by further increasing the modulation temperature. Using a developed method for accurate temperature measurements for the thin aerogel CNT sheets, heat dissipation processes, failure mechanisms, and associated power densities are investigated for encapsulated multilayered CNT TA heaters and related to the thermal diffusivity distance when sheet layers are separated. Resulting thermal management methods for high applied power are discussed and deployed to construct efficient and tunable underwater sound projector for operation at relatively low frequencies, 10 Hz-10 kHz. The optimal design of these TA projectors for high-power SONAR arrays is discussed.</description><identifier>ISSN: 0957-4484</identifier><identifier>EISSN: 1361-6528</identifier><identifier>DOI: 10.1088/0957-4484/25/40/405704</identifier><identifier>PMID: 25213658</identifier><identifier>CODEN: NNOTER</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Aerogels ; Carbon nanotubes ; Cross-disciplinary physics: materials science; rheology ; Encapsulation ; Exact sciences and technology ; Kirchhoff's law ; Low frequencies ; Materials science ; Nanocrystalline materials ; Nanoscale materials and structures: fabrication and characterization ; Nanotubes ; Physics ; Projectors ; Sound ; Thermal management ; Thermoacoustics</subject><ispartof>Nanotechnology, 2014-10, Vol.25 (40), p.405704-11</ispartof><rights>2014 IOP Publishing Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c484t-cad28b22ca3abac6010be5802a53b9d3f1c10f19b14825b3766ffbe653f8c5373</citedby><cites>FETCH-LOGICAL-c484t-cad28b22ca3abac6010be5802a53b9d3f1c10f19b14825b3766ffbe653f8c5373</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/0957-4484/25/40/405704/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,778,782,27911,27912,53833,53880</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28838590$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25213658$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Aliev, Ali E</creatorcontrib><creatorcontrib>Mayo, Nathanael K</creatorcontrib><creatorcontrib>Baughman, Ray H</creatorcontrib><creatorcontrib>Avirovik, Dragan</creatorcontrib><creatorcontrib>Priya, Shashank</creatorcontrib><creatorcontrib>Zarnetske, Michael R</creatorcontrib><creatorcontrib>Blottman, John B</creatorcontrib><title>Thermal management of thermoacoustic sound projectors using a free-standing carbon nanotube aerogel sheet as a heat source</title><title>Nanotechnology</title><addtitle>NANO</addtitle><addtitle>Nanotechnology</addtitle><description>Carbon nanotube (CNT) aerogel sheets produce smooth-spectra sound over a wide frequency range (1-105 Hz) by means of thermoacoustic (TA) sound generation. Protective encapsulation of CNT sheets in inert gases between rigid vibrating plates provides resonant features for the TA sound projector and attractive performance at needed low frequencies. Energy conversion efficiencies in air of 2% and 10% underwater, which can be enhanced by further increasing the modulation temperature. Using a developed method for accurate temperature measurements for the thin aerogel CNT sheets, heat dissipation processes, failure mechanisms, and associated power densities are investigated for encapsulated multilayered CNT TA heaters and related to the thermal diffusivity distance when sheet layers are separated. Resulting thermal management methods for high applied power are discussed and deployed to construct efficient and tunable underwater sound projector for operation at relatively low frequencies, 10 Hz-10 kHz. The optimal design of these TA projectors for high-power SONAR arrays is discussed.</description><subject>Aerogels</subject><subject>Carbon nanotubes</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Encapsulation</subject><subject>Exact sciences and technology</subject><subject>Kirchhoff's law</subject><subject>Low frequencies</subject><subject>Materials science</subject><subject>Nanocrystalline materials</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Nanotubes</subject><subject>Physics</subject><subject>Projectors</subject><subject>Sound</subject><subject>Thermal management</subject><subject>Thermoacoustics</subject><issn>0957-4484</issn><issn>1361-6528</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkU9r3DAQxU1pabZpv0LQpdAe3NUfS9YeQ2jTQkgu6VmM5NGuF1vaSvah-fSV2U1KobAgEBK_N_NmXlVdMfqFUa3XdCPbuml0s-Zy3dByZEubV9WKCcVqJbl-Xa1eoIvqXc57ShnTnL2tLrjkhZN6VT097jCNMJARAmxxxDCR6Mm0_EZwcc5T70iOc-jIIcU9uimmTObchy0B4hNinScI3fJ2kGwMJECI02yRAKa4xYHkHeJEIBfBDmFayiWH76s3HoaMH073ZfXz29fHm-_13cPtj5vru9oV51PtoOPacu5AgAWnKKMWpaYcpLCbTnjmGPVsY1mjubSiVcp7i0oKr50UrbisPh3rFv-_ZsyTGfvscBggYJnPsFZwzTUT9DyqGs5bxYU4j0rFVSF5U1B1RF2KOSf05pD6EdJvw6hZ0jRLUGYJynBpGmqOaRbh1anHbEfsXmTP8RXg4wmA7GDwCYLr819Oa6HlZpnr85Hr48Hsy_ZDWbi5v75_-KehOXS-sPw_7BmnfwBVK8SO</recordid><startdate>20141010</startdate><enddate>20141010</enddate><creator>Aliev, Ali E</creator><creator>Mayo, Nathanael K</creator><creator>Baughman, Ray H</creator><creator>Avirovik, Dragan</creator><creator>Priya, Shashank</creator><creator>Zarnetske, Michael R</creator><creator>Blottman, John B</creator><general>IOP Publishing</general><general>Institute of Physics</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope></search><sort><creationdate>20141010</creationdate><title>Thermal management of thermoacoustic sound projectors using a free-standing carbon nanotube aerogel sheet as a heat source</title><author>Aliev, Ali E ; Mayo, Nathanael K ; Baughman, Ray H ; Avirovik, Dragan ; Priya, Shashank ; Zarnetske, Michael R ; Blottman, John B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c484t-cad28b22ca3abac6010be5802a53b9d3f1c10f19b14825b3766ffbe653f8c5373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Aerogels</topic><topic>Carbon nanotubes</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Encapsulation</topic><topic>Exact sciences and technology</topic><topic>Kirchhoff's law</topic><topic>Low frequencies</topic><topic>Materials science</topic><topic>Nanocrystalline materials</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Nanotubes</topic><topic>Physics</topic><topic>Projectors</topic><topic>Sound</topic><topic>Thermal management</topic><topic>Thermoacoustics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aliev, Ali E</creatorcontrib><creatorcontrib>Mayo, Nathanael K</creatorcontrib><creatorcontrib>Baughman, Ray H</creatorcontrib><creatorcontrib>Avirovik, Dragan</creatorcontrib><creatorcontrib>Priya, Shashank</creatorcontrib><creatorcontrib>Zarnetske, Michael R</creatorcontrib><creatorcontrib>Blottman, John B</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aliev, Ali E</au><au>Mayo, Nathanael K</au><au>Baughman, Ray H</au><au>Avirovik, Dragan</au><au>Priya, Shashank</au><au>Zarnetske, Michael R</au><au>Blottman, John B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal management of thermoacoustic sound projectors using a free-standing carbon nanotube aerogel sheet as a heat source</atitle><jtitle>Nanotechnology</jtitle><stitle>NANO</stitle><addtitle>Nanotechnology</addtitle><date>2014-10-10</date><risdate>2014</risdate><volume>25</volume><issue>40</issue><spage>405704</spage><epage>11</epage><pages>405704-11</pages><issn>0957-4484</issn><eissn>1361-6528</eissn><coden>NNOTER</coden><abstract>Carbon nanotube (CNT) aerogel sheets produce smooth-spectra sound over a wide frequency range (1-105 Hz) by means of thermoacoustic (TA) sound generation. Protective encapsulation of CNT sheets in inert gases between rigid vibrating plates provides resonant features for the TA sound projector and attractive performance at needed low frequencies. Energy conversion efficiencies in air of 2% and 10% underwater, which can be enhanced by further increasing the modulation temperature. Using a developed method for accurate temperature measurements for the thin aerogel CNT sheets, heat dissipation processes, failure mechanisms, and associated power densities are investigated for encapsulated multilayered CNT TA heaters and related to the thermal diffusivity distance when sheet layers are separated. Resulting thermal management methods for high applied power are discussed and deployed to construct efficient and tunable underwater sound projector for operation at relatively low frequencies, 10 Hz-10 kHz. The optimal design of these TA projectors for high-power SONAR arrays is discussed.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><pmid>25213658</pmid><doi>10.1088/0957-4484/25/40/405704</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0957-4484
ispartof Nanotechnology, 2014-10, Vol.25 (40), p.405704-11
issn 0957-4484
1361-6528
language eng
recordid cdi_pascalfrancis_primary_28838590
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects Aerogels
Carbon nanotubes
Cross-disciplinary physics: materials science
rheology
Encapsulation
Exact sciences and technology
Kirchhoff's law
Low frequencies
Materials science
Nanocrystalline materials
Nanoscale materials and structures: fabrication and characterization
Nanotubes
Physics
Projectors
Sound
Thermal management
Thermoacoustics
title Thermal management of thermoacoustic sound projectors using a free-standing carbon nanotube aerogel sheet as a heat source
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T01%3A10%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20management%20of%20thermoacoustic%20sound%20projectors%20using%20a%20free-standing%20carbon%20nanotube%20aerogel%20sheet%20as%20a%20heat%20source&rft.jtitle=Nanotechnology&rft.au=Aliev,%20Ali%20E&rft.date=2014-10-10&rft.volume=25&rft.issue=40&rft.spage=405704&rft.epage=11&rft.pages=405704-11&rft.issn=0957-4484&rft.eissn=1361-6528&rft.coden=NNOTER&rft_id=info:doi/10.1088/0957-4484/25/40/405704&rft_dat=%3Cproquest_pasca%3E1642276233%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1562662324&rft_id=info:pmid/25213658&rfr_iscdi=true