Delay and Energy Constrained Random Access Transport Capacity
In this paper, we consider a delay and energy constrained wireless ad hoc network with node density of λ n , where a packet should be delivered to the destination within D(λ n ) seconds using at most E(λ n ) energy in joules while satisfying the target outage probability. The performance metric for...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on wireless communications 2014-08, Vol.13 (8), p.4495-4506 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4506 |
---|---|
container_issue | 8 |
container_start_page | 4495 |
container_title | IEEE transactions on wireless communications |
container_volume | 13 |
creator | Byun, Ilmu Ko, Byung Hoon Jeon, Ki Jun Kim, Kwang Soon |
description | In this paper, we consider a delay and energy constrained wireless ad hoc network with node density of λ n , where a packet should be delivered to the destination within D(λ n ) seconds using at most E(λ n ) energy in joules while satisfying the target outage probability. The performance metric for analyzing the network is the delay and energy constrained random access transport capacity (DE-RATC), i.e., C ϵ (D(λ n ), E(λ n ), which quantifies the maximum end-to-end distance weighted rate per unit area of a delay and energy constrained network using a random access protocol. It is shown that a slotted ALOHA protocol is order-optimal under any delay and energy constraints if equipped with additional features such as power control, multi-hop control, interference control, and rate control, and the delay and energy constraints can be divided into three regions according to the relation between the physical quantities due to the constraints and those due to the node density and network size. The three regions are the non-constrained (NC) region, where the DE-RATC is given by Θ(√λ n /logλ n ); the delay-constrained (DC) region, where the DE-RATC depends only on the delay constraint as Θ(D(λ n ); and the non-achievable (NA) region where a packet delivery under the given constraints is impossible. Also, it is shown that an arbitrary tradeoff between the rate of each source node and the number of source nodes can be achieved while keeping the optimal capacity scaling as long as λ s =Ω√λ n /logλ n , Dλ n ))). |
doi_str_mv | 10.1109/TWC.2014.2320253 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_28807211</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6805635</ieee_id><sourcerecordid>1567111986</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-6abd1ca48e851adce3bfd5262c6e373b4def5610ee547717f2356f176db16ef23</originalsourceid><addsrcrecordid>eNpdkEtLw0AQgBdRsFbvgpeACF5Sd3azjx48SKwPKAhS8bhsNhNJSZO4mx7y793S0oOneX0zDB8h10BnAHT-sPrOZ4xCNmOcUSb4CZmAEDplLNOnu5zLFJiS5-QihDWloKQQE_L4jI0dE9uWyaJF_zMmedeGwdu6xTL5jP1ukzw5hyEkK2_b0Hd-SHLbW1cP4yU5q2wT8OoQp-TrZbHK39Llx-t7_rRMHRfZkEpblOBsplELsKVDXlSlYJI5iVzxIiuxEhIoosiUAlUxLmQVPywLkBirKbnf3-1997vFMJhNHRw2jW2x2wYDQioAmGsZ0dt_6Lrb-jZ-FynB2ZwzPY8U3VPOdyF4rEzv6431owFqdj5N9Gl2Ps3BZ1y5Oxy2wdmmijJcHY57TGuqGEDkbvZcjYjHsdRUSC74HxONfHs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1553293289</pqid></control><display><type>article</type><title>Delay and Energy Constrained Random Access Transport Capacity</title><source>IEEE Xplore</source><creator>Byun, Ilmu ; Ko, Byung Hoon ; Jeon, Ki Jun ; Kim, Kwang Soon</creator><creatorcontrib>Byun, Ilmu ; Ko, Byung Hoon ; Jeon, Ki Jun ; Kim, Kwang Soon</creatorcontrib><description>In this paper, we consider a delay and energy constrained wireless ad hoc network with node density of λ n , where a packet should be delivered to the destination within D(λ n ) seconds using at most E(λ n ) energy in joules while satisfying the target outage probability. The performance metric for analyzing the network is the delay and energy constrained random access transport capacity (DE-RATC), i.e., C ϵ (D(λ n ), E(λ n ), which quantifies the maximum end-to-end distance weighted rate per unit area of a delay and energy constrained network using a random access protocol. It is shown that a slotted ALOHA protocol is order-optimal under any delay and energy constraints if equipped with additional features such as power control, multi-hop control, interference control, and rate control, and the delay and energy constraints can be divided into three regions according to the relation between the physical quantities due to the constraints and those due to the node density and network size. The three regions are the non-constrained (NC) region, where the DE-RATC is given by Θ(√λ n /logλ n ); the delay-constrained (DC) region, where the DE-RATC depends only on the delay constraint as Θ(D(λ n ); and the non-achievable (NA) region where a packet delivery under the given constraints is impossible. Also, it is shown that an arbitrary tradeoff between the rate of each source node and the number of source nodes can be achieved while keeping the optimal capacity scaling as long as λ s =Ω√λ n /logλ n , Dλ n ))).</description><identifier>ISSN: 1536-1276</identifier><identifier>EISSN: 1558-2248</identifier><identifier>DOI: 10.1109/TWC.2014.2320253</identifier><identifier>CODEN: ITWCAX</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Access methods and protocols, osi model ; Applied sciences ; Business and industry local networks ; Capacity planning ; Constraints ; Control equipment ; Delay ; Delays ; Density ; Energy use ; Exact sciences and technology ; Interference ; Mobile ad hoc networks ; Networks ; Networks and services in france and abroad ; Protocols ; Random access ; Systems, networks and services of telecommunications ; Telecommunications ; Telecommunications and information theory ; Teleprocessing networks. Isdn ; Teletraffic ; Wireless communication</subject><ispartof>IEEE transactions on wireless communications, 2014-08, Vol.13 (8), p.4495-4506</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Aug 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c354t-6abd1ca48e851adce3bfd5262c6e373b4def5610ee547717f2356f176db16ef23</citedby><cites>FETCH-LOGICAL-c354t-6abd1ca48e851adce3bfd5262c6e373b4def5610ee547717f2356f176db16ef23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6805635$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6805635$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28807211$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Byun, Ilmu</creatorcontrib><creatorcontrib>Ko, Byung Hoon</creatorcontrib><creatorcontrib>Jeon, Ki Jun</creatorcontrib><creatorcontrib>Kim, Kwang Soon</creatorcontrib><title>Delay and Energy Constrained Random Access Transport Capacity</title><title>IEEE transactions on wireless communications</title><addtitle>TWC</addtitle><description>In this paper, we consider a delay and energy constrained wireless ad hoc network with node density of λ n , where a packet should be delivered to the destination within D(λ n ) seconds using at most E(λ n ) energy in joules while satisfying the target outage probability. The performance metric for analyzing the network is the delay and energy constrained random access transport capacity (DE-RATC), i.e., C ϵ (D(λ n ), E(λ n ), which quantifies the maximum end-to-end distance weighted rate per unit area of a delay and energy constrained network using a random access protocol. It is shown that a slotted ALOHA protocol is order-optimal under any delay and energy constraints if equipped with additional features such as power control, multi-hop control, interference control, and rate control, and the delay and energy constraints can be divided into three regions according to the relation between the physical quantities due to the constraints and those due to the node density and network size. The three regions are the non-constrained (NC) region, where the DE-RATC is given by Θ(√λ n /logλ n ); the delay-constrained (DC) region, where the DE-RATC depends only on the delay constraint as Θ(D(λ n ); and the non-achievable (NA) region where a packet delivery under the given constraints is impossible. Also, it is shown that an arbitrary tradeoff between the rate of each source node and the number of source nodes can be achieved while keeping the optimal capacity scaling as long as λ s =Ω√λ n /logλ n , Dλ n ))).</description><subject>Access methods and protocols, osi model</subject><subject>Applied sciences</subject><subject>Business and industry local networks</subject><subject>Capacity planning</subject><subject>Constraints</subject><subject>Control equipment</subject><subject>Delay</subject><subject>Delays</subject><subject>Density</subject><subject>Energy use</subject><subject>Exact sciences and technology</subject><subject>Interference</subject><subject>Mobile ad hoc networks</subject><subject>Networks</subject><subject>Networks and services in france and abroad</subject><subject>Protocols</subject><subject>Random access</subject><subject>Systems, networks and services of telecommunications</subject><subject>Telecommunications</subject><subject>Telecommunications and information theory</subject><subject>Teleprocessing networks. Isdn</subject><subject>Teletraffic</subject><subject>Wireless communication</subject><issn>1536-1276</issn><issn>1558-2248</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkEtLw0AQgBdRsFbvgpeACF5Sd3azjx48SKwPKAhS8bhsNhNJSZO4mx7y793S0oOneX0zDB8h10BnAHT-sPrOZ4xCNmOcUSb4CZmAEDplLNOnu5zLFJiS5-QihDWloKQQE_L4jI0dE9uWyaJF_zMmedeGwdu6xTL5jP1ukzw5hyEkK2_b0Hd-SHLbW1cP4yU5q2wT8OoQp-TrZbHK39Llx-t7_rRMHRfZkEpblOBsplELsKVDXlSlYJI5iVzxIiuxEhIoosiUAlUxLmQVPywLkBirKbnf3-1997vFMJhNHRw2jW2x2wYDQioAmGsZ0dt_6Lrb-jZ-FynB2ZwzPY8U3VPOdyF4rEzv6431owFqdj5N9Gl2Ps3BZ1y5Oxy2wdmmijJcHY57TGuqGEDkbvZcjYjHsdRUSC74HxONfHs</recordid><startdate>20140801</startdate><enddate>20140801</enddate><creator>Byun, Ilmu</creator><creator>Ko, Byung Hoon</creator><creator>Jeon, Ki Jun</creator><creator>Kim, Kwang Soon</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20140801</creationdate><title>Delay and Energy Constrained Random Access Transport Capacity</title><author>Byun, Ilmu ; Ko, Byung Hoon ; Jeon, Ki Jun ; Kim, Kwang Soon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-6abd1ca48e851adce3bfd5262c6e373b4def5610ee547717f2356f176db16ef23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Access methods and protocols, osi model</topic><topic>Applied sciences</topic><topic>Business and industry local networks</topic><topic>Capacity planning</topic><topic>Constraints</topic><topic>Control equipment</topic><topic>Delay</topic><topic>Delays</topic><topic>Density</topic><topic>Energy use</topic><topic>Exact sciences and technology</topic><topic>Interference</topic><topic>Mobile ad hoc networks</topic><topic>Networks</topic><topic>Networks and services in france and abroad</topic><topic>Protocols</topic><topic>Random access</topic><topic>Systems, networks and services of telecommunications</topic><topic>Telecommunications</topic><topic>Telecommunications and information theory</topic><topic>Teleprocessing networks. Isdn</topic><topic>Teletraffic</topic><topic>Wireless communication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Byun, Ilmu</creatorcontrib><creatorcontrib>Ko, Byung Hoon</creatorcontrib><creatorcontrib>Jeon, Ki Jun</creatorcontrib><creatorcontrib>Kim, Kwang Soon</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on wireless communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Byun, Ilmu</au><au>Ko, Byung Hoon</au><au>Jeon, Ki Jun</au><au>Kim, Kwang Soon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Delay and Energy Constrained Random Access Transport Capacity</atitle><jtitle>IEEE transactions on wireless communications</jtitle><stitle>TWC</stitle><date>2014-08-01</date><risdate>2014</risdate><volume>13</volume><issue>8</issue><spage>4495</spage><epage>4506</epage><pages>4495-4506</pages><issn>1536-1276</issn><eissn>1558-2248</eissn><coden>ITWCAX</coden><abstract>In this paper, we consider a delay and energy constrained wireless ad hoc network with node density of λ n , where a packet should be delivered to the destination within D(λ n ) seconds using at most E(λ n ) energy in joules while satisfying the target outage probability. The performance metric for analyzing the network is the delay and energy constrained random access transport capacity (DE-RATC), i.e., C ϵ (D(λ n ), E(λ n ), which quantifies the maximum end-to-end distance weighted rate per unit area of a delay and energy constrained network using a random access protocol. It is shown that a slotted ALOHA protocol is order-optimal under any delay and energy constraints if equipped with additional features such as power control, multi-hop control, interference control, and rate control, and the delay and energy constraints can be divided into three regions according to the relation between the physical quantities due to the constraints and those due to the node density and network size. The three regions are the non-constrained (NC) region, where the DE-RATC is given by Θ(√λ n /logλ n ); the delay-constrained (DC) region, where the DE-RATC depends only on the delay constraint as Θ(D(λ n ); and the non-achievable (NA) region where a packet delivery under the given constraints is impossible. Also, it is shown that an arbitrary tradeoff between the rate of each source node and the number of source nodes can be achieved while keeping the optimal capacity scaling as long as λ s =Ω√λ n /logλ n , Dλ n ))).</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TWC.2014.2320253</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1536-1276 |
ispartof | IEEE transactions on wireless communications, 2014-08, Vol.13 (8), p.4495-4506 |
issn | 1536-1276 1558-2248 |
language | eng |
recordid | cdi_pascalfrancis_primary_28807211 |
source | IEEE Xplore |
subjects | Access methods and protocols, osi model Applied sciences Business and industry local networks Capacity planning Constraints Control equipment Delay Delays Density Energy use Exact sciences and technology Interference Mobile ad hoc networks Networks Networks and services in france and abroad Protocols Random access Systems, networks and services of telecommunications Telecommunications Telecommunications and information theory Teleprocessing networks. Isdn Teletraffic Wireless communication |
title | Delay and Energy Constrained Random Access Transport Capacity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T08%3A58%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Delay%20and%20Energy%20Constrained%20Random%20Access%20Transport%20Capacity&rft.jtitle=IEEE%20transactions%20on%20wireless%20communications&rft.au=Byun,%20Ilmu&rft.date=2014-08-01&rft.volume=13&rft.issue=8&rft.spage=4495&rft.epage=4506&rft.pages=4495-4506&rft.issn=1536-1276&rft.eissn=1558-2248&rft.coden=ITWCAX&rft_id=info:doi/10.1109/TWC.2014.2320253&rft_dat=%3Cproquest_RIE%3E1567111986%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1553293289&rft_id=info:pmid/&rft_ieee_id=6805635&rfr_iscdi=true |