Delay and Energy Constrained Random Access Transport Capacity

In this paper, we consider a delay and energy constrained wireless ad hoc network with node density of λ n , where a packet should be delivered to the destination within D(λ n ) seconds using at most E(λ n ) energy in joules while satisfying the target outage probability. The performance metric for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on wireless communications 2014-08, Vol.13 (8), p.4495-4506
Hauptverfasser: Byun, Ilmu, Ko, Byung Hoon, Jeon, Ki Jun, Kim, Kwang Soon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4506
container_issue 8
container_start_page 4495
container_title IEEE transactions on wireless communications
container_volume 13
creator Byun, Ilmu
Ko, Byung Hoon
Jeon, Ki Jun
Kim, Kwang Soon
description In this paper, we consider a delay and energy constrained wireless ad hoc network with node density of λ n , where a packet should be delivered to the destination within D(λ n ) seconds using at most E(λ n ) energy in joules while satisfying the target outage probability. The performance metric for analyzing the network is the delay and energy constrained random access transport capacity (DE-RATC), i.e., C ϵ (D(λ n ), E(λ n ), which quantifies the maximum end-to-end distance weighted rate per unit area of a delay and energy constrained network using a random access protocol. It is shown that a slotted ALOHA protocol is order-optimal under any delay and energy constraints if equipped with additional features such as power control, multi-hop control, interference control, and rate control, and the delay and energy constraints can be divided into three regions according to the relation between the physical quantities due to the constraints and those due to the node density and network size. The three regions are the non-constrained (NC) region, where the DE-RATC is given by Θ(√λ n /logλ n ); the delay-constrained (DC) region, where the DE-RATC depends only on the delay constraint as Θ(D(λ n ); and the non-achievable (NA) region where a packet delivery under the given constraints is impossible. Also, it is shown that an arbitrary tradeoff between the rate of each source node and the number of source nodes can be achieved while keeping the optimal capacity scaling as long as λ s =Ω√λ n /logλ n , Dλ n ))).
doi_str_mv 10.1109/TWC.2014.2320253
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_28807211</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6805635</ieee_id><sourcerecordid>1567111986</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-6abd1ca48e851adce3bfd5262c6e373b4def5610ee547717f2356f176db16ef23</originalsourceid><addsrcrecordid>eNpdkEtLw0AQgBdRsFbvgpeACF5Sd3azjx48SKwPKAhS8bhsNhNJSZO4mx7y793S0oOneX0zDB8h10BnAHT-sPrOZ4xCNmOcUSb4CZmAEDplLNOnu5zLFJiS5-QihDWloKQQE_L4jI0dE9uWyaJF_zMmedeGwdu6xTL5jP1ukzw5hyEkK2_b0Hd-SHLbW1cP4yU5q2wT8OoQp-TrZbHK39Llx-t7_rRMHRfZkEpblOBsplELsKVDXlSlYJI5iVzxIiuxEhIoosiUAlUxLmQVPywLkBirKbnf3-1997vFMJhNHRw2jW2x2wYDQioAmGsZ0dt_6Lrb-jZ-FynB2ZwzPY8U3VPOdyF4rEzv6431owFqdj5N9Gl2Ps3BZ1y5Oxy2wdmmijJcHY57TGuqGEDkbvZcjYjHsdRUSC74HxONfHs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1553293289</pqid></control><display><type>article</type><title>Delay and Energy Constrained Random Access Transport Capacity</title><source>IEEE Xplore</source><creator>Byun, Ilmu ; Ko, Byung Hoon ; Jeon, Ki Jun ; Kim, Kwang Soon</creator><creatorcontrib>Byun, Ilmu ; Ko, Byung Hoon ; Jeon, Ki Jun ; Kim, Kwang Soon</creatorcontrib><description>In this paper, we consider a delay and energy constrained wireless ad hoc network with node density of λ n , where a packet should be delivered to the destination within D(λ n ) seconds using at most E(λ n ) energy in joules while satisfying the target outage probability. The performance metric for analyzing the network is the delay and energy constrained random access transport capacity (DE-RATC), i.e., C ϵ (D(λ n ), E(λ n ), which quantifies the maximum end-to-end distance weighted rate per unit area of a delay and energy constrained network using a random access protocol. It is shown that a slotted ALOHA protocol is order-optimal under any delay and energy constraints if equipped with additional features such as power control, multi-hop control, interference control, and rate control, and the delay and energy constraints can be divided into three regions according to the relation between the physical quantities due to the constraints and those due to the node density and network size. The three regions are the non-constrained (NC) region, where the DE-RATC is given by Θ(√λ n /logλ n ); the delay-constrained (DC) region, where the DE-RATC depends only on the delay constraint as Θ(D(λ n ); and the non-achievable (NA) region where a packet delivery under the given constraints is impossible. Also, it is shown that an arbitrary tradeoff between the rate of each source node and the number of source nodes can be achieved while keeping the optimal capacity scaling as long as λ s =Ω√λ n /logλ n , Dλ n ))).</description><identifier>ISSN: 1536-1276</identifier><identifier>EISSN: 1558-2248</identifier><identifier>DOI: 10.1109/TWC.2014.2320253</identifier><identifier>CODEN: ITWCAX</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Access methods and protocols, osi model ; Applied sciences ; Business and industry local networks ; Capacity planning ; Constraints ; Control equipment ; Delay ; Delays ; Density ; Energy use ; Exact sciences and technology ; Interference ; Mobile ad hoc networks ; Networks ; Networks and services in france and abroad ; Protocols ; Random access ; Systems, networks and services of telecommunications ; Telecommunications ; Telecommunications and information theory ; Teleprocessing networks. Isdn ; Teletraffic ; Wireless communication</subject><ispartof>IEEE transactions on wireless communications, 2014-08, Vol.13 (8), p.4495-4506</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Aug 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c354t-6abd1ca48e851adce3bfd5262c6e373b4def5610ee547717f2356f176db16ef23</citedby><cites>FETCH-LOGICAL-c354t-6abd1ca48e851adce3bfd5262c6e373b4def5610ee547717f2356f176db16ef23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6805635$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6805635$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28807211$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Byun, Ilmu</creatorcontrib><creatorcontrib>Ko, Byung Hoon</creatorcontrib><creatorcontrib>Jeon, Ki Jun</creatorcontrib><creatorcontrib>Kim, Kwang Soon</creatorcontrib><title>Delay and Energy Constrained Random Access Transport Capacity</title><title>IEEE transactions on wireless communications</title><addtitle>TWC</addtitle><description>In this paper, we consider a delay and energy constrained wireless ad hoc network with node density of λ n , where a packet should be delivered to the destination within D(λ n ) seconds using at most E(λ n ) energy in joules while satisfying the target outage probability. The performance metric for analyzing the network is the delay and energy constrained random access transport capacity (DE-RATC), i.e., C ϵ (D(λ n ), E(λ n ), which quantifies the maximum end-to-end distance weighted rate per unit area of a delay and energy constrained network using a random access protocol. It is shown that a slotted ALOHA protocol is order-optimal under any delay and energy constraints if equipped with additional features such as power control, multi-hop control, interference control, and rate control, and the delay and energy constraints can be divided into three regions according to the relation between the physical quantities due to the constraints and those due to the node density and network size. The three regions are the non-constrained (NC) region, where the DE-RATC is given by Θ(√λ n /logλ n ); the delay-constrained (DC) region, where the DE-RATC depends only on the delay constraint as Θ(D(λ n ); and the non-achievable (NA) region where a packet delivery under the given constraints is impossible. Also, it is shown that an arbitrary tradeoff between the rate of each source node and the number of source nodes can be achieved while keeping the optimal capacity scaling as long as λ s =Ω√λ n /logλ n , Dλ n ))).</description><subject>Access methods and protocols, osi model</subject><subject>Applied sciences</subject><subject>Business and industry local networks</subject><subject>Capacity planning</subject><subject>Constraints</subject><subject>Control equipment</subject><subject>Delay</subject><subject>Delays</subject><subject>Density</subject><subject>Energy use</subject><subject>Exact sciences and technology</subject><subject>Interference</subject><subject>Mobile ad hoc networks</subject><subject>Networks</subject><subject>Networks and services in france and abroad</subject><subject>Protocols</subject><subject>Random access</subject><subject>Systems, networks and services of telecommunications</subject><subject>Telecommunications</subject><subject>Telecommunications and information theory</subject><subject>Teleprocessing networks. Isdn</subject><subject>Teletraffic</subject><subject>Wireless communication</subject><issn>1536-1276</issn><issn>1558-2248</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkEtLw0AQgBdRsFbvgpeACF5Sd3azjx48SKwPKAhS8bhsNhNJSZO4mx7y793S0oOneX0zDB8h10BnAHT-sPrOZ4xCNmOcUSb4CZmAEDplLNOnu5zLFJiS5-QihDWloKQQE_L4jI0dE9uWyaJF_zMmedeGwdu6xTL5jP1ukzw5hyEkK2_b0Hd-SHLbW1cP4yU5q2wT8OoQp-TrZbHK39Llx-t7_rRMHRfZkEpblOBsplELsKVDXlSlYJI5iVzxIiuxEhIoosiUAlUxLmQVPywLkBirKbnf3-1997vFMJhNHRw2jW2x2wYDQioAmGsZ0dt_6Lrb-jZ-FynB2ZwzPY8U3VPOdyF4rEzv6431owFqdj5N9Gl2Ps3BZ1y5Oxy2wdmmijJcHY57TGuqGEDkbvZcjYjHsdRUSC74HxONfHs</recordid><startdate>20140801</startdate><enddate>20140801</enddate><creator>Byun, Ilmu</creator><creator>Ko, Byung Hoon</creator><creator>Jeon, Ki Jun</creator><creator>Kim, Kwang Soon</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20140801</creationdate><title>Delay and Energy Constrained Random Access Transport Capacity</title><author>Byun, Ilmu ; Ko, Byung Hoon ; Jeon, Ki Jun ; Kim, Kwang Soon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-6abd1ca48e851adce3bfd5262c6e373b4def5610ee547717f2356f176db16ef23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Access methods and protocols, osi model</topic><topic>Applied sciences</topic><topic>Business and industry local networks</topic><topic>Capacity planning</topic><topic>Constraints</topic><topic>Control equipment</topic><topic>Delay</topic><topic>Delays</topic><topic>Density</topic><topic>Energy use</topic><topic>Exact sciences and technology</topic><topic>Interference</topic><topic>Mobile ad hoc networks</topic><topic>Networks</topic><topic>Networks and services in france and abroad</topic><topic>Protocols</topic><topic>Random access</topic><topic>Systems, networks and services of telecommunications</topic><topic>Telecommunications</topic><topic>Telecommunications and information theory</topic><topic>Teleprocessing networks. Isdn</topic><topic>Teletraffic</topic><topic>Wireless communication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Byun, Ilmu</creatorcontrib><creatorcontrib>Ko, Byung Hoon</creatorcontrib><creatorcontrib>Jeon, Ki Jun</creatorcontrib><creatorcontrib>Kim, Kwang Soon</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on wireless communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Byun, Ilmu</au><au>Ko, Byung Hoon</au><au>Jeon, Ki Jun</au><au>Kim, Kwang Soon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Delay and Energy Constrained Random Access Transport Capacity</atitle><jtitle>IEEE transactions on wireless communications</jtitle><stitle>TWC</stitle><date>2014-08-01</date><risdate>2014</risdate><volume>13</volume><issue>8</issue><spage>4495</spage><epage>4506</epage><pages>4495-4506</pages><issn>1536-1276</issn><eissn>1558-2248</eissn><coden>ITWCAX</coden><abstract>In this paper, we consider a delay and energy constrained wireless ad hoc network with node density of λ n , where a packet should be delivered to the destination within D(λ n ) seconds using at most E(λ n ) energy in joules while satisfying the target outage probability. The performance metric for analyzing the network is the delay and energy constrained random access transport capacity (DE-RATC), i.e., C ϵ (D(λ n ), E(λ n ), which quantifies the maximum end-to-end distance weighted rate per unit area of a delay and energy constrained network using a random access protocol. It is shown that a slotted ALOHA protocol is order-optimal under any delay and energy constraints if equipped with additional features such as power control, multi-hop control, interference control, and rate control, and the delay and energy constraints can be divided into three regions according to the relation between the physical quantities due to the constraints and those due to the node density and network size. The three regions are the non-constrained (NC) region, where the DE-RATC is given by Θ(√λ n /logλ n ); the delay-constrained (DC) region, where the DE-RATC depends only on the delay constraint as Θ(D(λ n ); and the non-achievable (NA) region where a packet delivery under the given constraints is impossible. Also, it is shown that an arbitrary tradeoff between the rate of each source node and the number of source nodes can be achieved while keeping the optimal capacity scaling as long as λ s =Ω√λ n /logλ n , Dλ n ))).</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TWC.2014.2320253</doi><tpages>12</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1536-1276
ispartof IEEE transactions on wireless communications, 2014-08, Vol.13 (8), p.4495-4506
issn 1536-1276
1558-2248
language eng
recordid cdi_pascalfrancis_primary_28807211
source IEEE Xplore
subjects Access methods and protocols, osi model
Applied sciences
Business and industry local networks
Capacity planning
Constraints
Control equipment
Delay
Delays
Density
Energy use
Exact sciences and technology
Interference
Mobile ad hoc networks
Networks
Networks and services in france and abroad
Protocols
Random access
Systems, networks and services of telecommunications
Telecommunications
Telecommunications and information theory
Teleprocessing networks. Isdn
Teletraffic
Wireless communication
title Delay and Energy Constrained Random Access Transport Capacity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T08%3A58%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Delay%20and%20Energy%20Constrained%20Random%20Access%20Transport%20Capacity&rft.jtitle=IEEE%20transactions%20on%20wireless%20communications&rft.au=Byun,%20Ilmu&rft.date=2014-08-01&rft.volume=13&rft.issue=8&rft.spage=4495&rft.epage=4506&rft.pages=4495-4506&rft.issn=1536-1276&rft.eissn=1558-2248&rft.coden=ITWCAX&rft_id=info:doi/10.1109/TWC.2014.2320253&rft_dat=%3Cproquest_RIE%3E1567111986%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1553293289&rft_id=info:pmid/&rft_ieee_id=6805635&rfr_iscdi=true