Stress, temperature and electric field effects in the lead-free (Ba,Ca)(Ti,Zr)O3 piezoelectric system
The large signal strain response as a function of uniaxial compressive stress, electric field and temperature is investigated for compositions across the morphotropic phase boundary in the (Ba,Ca)(Ti,Zr)O3 ferroelectric system. The largest piezoelectric coefficient in terms of unipolar strain divide...
Gespeichert in:
Veröffentlicht in: | Acta materialia 2014-10, Vol.78, p.37-45 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 45 |
---|---|
container_issue | |
container_start_page | 37 |
container_title | Acta materialia |
container_volume | 78 |
creator | Ehmke, Matthias C. Schader, Florian H. Webber, Kyle G. Rödel, Jürgen Blendell, John E. Bowman, Keith J. |
description | The large signal strain response as a function of uniaxial compressive stress, electric field and temperature is investigated for compositions across the morphotropic phase boundary in the (Ba,Ca)(Ti,Zr)O3 ferroelectric system. The largest piezoelectric coefficient in terms of unipolar strain divided by the maximum applied field, Su/Emax, is 1540pmV−1, which clearly exceeds the piezoelectric response of most lead zirconate titanate materials. The extraordinarily large piezoelectric properties occur in the vicinity of the morphotropic phase boundary region on the rhombohedral side of the phase diagram. In this material, an electric threshold field is observed that is required to overcome the stress-induced domain clamping and obtain a measurable strain response. Moreover, the study reveals that careful selection of composition, stress and field amplitude allow for large signal piezoelectric coefficients of over 740pmV−1 in the temperature range of 25–75°C. The extraordinarily large unipolar strain response can be assigned to an electric field-controlled regime, in which the unipolar compressive stress induces non-180° domain switching perpendicular to the applied electric field. During electrical loading, the electric field can realign these domains back into the parallel direction, maximizing non-180° domain switching and enhancing unipolar strain. |
doi_str_mv | 10.1016/j.actamat.2014.06.005 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_28732739</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S135964541400425X</els_id><sourcerecordid>S135964541400425X</sourcerecordid><originalsourceid>FETCH-LOGICAL-e156t-f8bce0e6f80f16a49e2d7d78b4c7c4ca91642e2b864579caa7596d69cbc4ffff3</originalsourceid><addsrcrecordid>eNo9kE9LAzEQxYMoWKsfQchFaKG7JrvZZPckWvwHhR6sFy9hNjvBlO22JFGon95Ii3OZefDmMfMj5JqznDMub9c5mAgbiHnBuMiZzBmrTsiI16rMClGVp2kuqyaTohLn5CKENWO8UIKNCL5FjyHMaMTNDj3EL48Uho5ijyZ6Z6h12CdpbdKBuoHGT6Q9QpdZj0gnDzCbw3SycrMPP12WdOfwZ_u_HfYhJV-SMwt9wKtjH5P3p8fV_CVbLJ9f5_eLDHklY2br1iBDaWtmuQTRYNGpTtWtMMoIAw2XosCirdMjqjEAqmpkJxvTGmFTlWNyc8jdQTDQWw-DcUHvvNuA3-siASlU2STf3cGH6Zhvh14H43Aw2DmfDtfd1mnO9B9dvdZHuvqPrmZSJ7rlLw9KcVk</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Stress, temperature and electric field effects in the lead-free (Ba,Ca)(Ti,Zr)O3 piezoelectric system</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Ehmke, Matthias C. ; Schader, Florian H. ; Webber, Kyle G. ; Rödel, Jürgen ; Blendell, John E. ; Bowman, Keith J.</creator><creatorcontrib>Ehmke, Matthias C. ; Schader, Florian H. ; Webber, Kyle G. ; Rödel, Jürgen ; Blendell, John E. ; Bowman, Keith J.</creatorcontrib><description>The large signal strain response as a function of uniaxial compressive stress, electric field and temperature is investigated for compositions across the morphotropic phase boundary in the (Ba,Ca)(Ti,Zr)O3 ferroelectric system. The largest piezoelectric coefficient in terms of unipolar strain divided by the maximum applied field, Su/Emax, is 1540pmV−1, which clearly exceeds the piezoelectric response of most lead zirconate titanate materials. The extraordinarily large piezoelectric properties occur in the vicinity of the morphotropic phase boundary region on the rhombohedral side of the phase diagram. In this material, an electric threshold field is observed that is required to overcome the stress-induced domain clamping and obtain a measurable strain response. Moreover, the study reveals that careful selection of composition, stress and field amplitude allow for large signal piezoelectric coefficients of over 740pmV−1 in the temperature range of 25–75°C. The extraordinarily large unipolar strain response can be assigned to an electric field-controlled regime, in which the unipolar compressive stress induces non-180° domain switching perpendicular to the applied electric field. During electrical loading, the electric field can realign these domains back into the parallel direction, maximizing non-180° domain switching and enhancing unipolar strain.</description><identifier>ISSN: 1359-6454</identifier><identifier>EISSN: 1873-2453</identifier><identifier>DOI: 10.1016/j.actamat.2014.06.005</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Actuator ; Applied sciences ; BZT-BCT ; Exact sciences and technology ; Ferroelasticity ; Ferroelectrics ; Lead-free ; Metals. Metallurgy</subject><ispartof>Acta materialia, 2014-10, Vol.78, p.37-45</ispartof><rights>2014 Acta Materialia Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.actamat.2014.06.005$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28732739$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ehmke, Matthias C.</creatorcontrib><creatorcontrib>Schader, Florian H.</creatorcontrib><creatorcontrib>Webber, Kyle G.</creatorcontrib><creatorcontrib>Rödel, Jürgen</creatorcontrib><creatorcontrib>Blendell, John E.</creatorcontrib><creatorcontrib>Bowman, Keith J.</creatorcontrib><title>Stress, temperature and electric field effects in the lead-free (Ba,Ca)(Ti,Zr)O3 piezoelectric system</title><title>Acta materialia</title><description>The large signal strain response as a function of uniaxial compressive stress, electric field and temperature is investigated for compositions across the morphotropic phase boundary in the (Ba,Ca)(Ti,Zr)O3 ferroelectric system. The largest piezoelectric coefficient in terms of unipolar strain divided by the maximum applied field, Su/Emax, is 1540pmV−1, which clearly exceeds the piezoelectric response of most lead zirconate titanate materials. The extraordinarily large piezoelectric properties occur in the vicinity of the morphotropic phase boundary region on the rhombohedral side of the phase diagram. In this material, an electric threshold field is observed that is required to overcome the stress-induced domain clamping and obtain a measurable strain response. Moreover, the study reveals that careful selection of composition, stress and field amplitude allow for large signal piezoelectric coefficients of over 740pmV−1 in the temperature range of 25–75°C. The extraordinarily large unipolar strain response can be assigned to an electric field-controlled regime, in which the unipolar compressive stress induces non-180° domain switching perpendicular to the applied electric field. During electrical loading, the electric field can realign these domains back into the parallel direction, maximizing non-180° domain switching and enhancing unipolar strain.</description><subject>Actuator</subject><subject>Applied sciences</subject><subject>BZT-BCT</subject><subject>Exact sciences and technology</subject><subject>Ferroelasticity</subject><subject>Ferroelectrics</subject><subject>Lead-free</subject><subject>Metals. Metallurgy</subject><issn>1359-6454</issn><issn>1873-2453</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNo9kE9LAzEQxYMoWKsfQchFaKG7JrvZZPckWvwHhR6sFy9hNjvBlO22JFGon95Ii3OZefDmMfMj5JqznDMub9c5mAgbiHnBuMiZzBmrTsiI16rMClGVp2kuqyaTohLn5CKENWO8UIKNCL5FjyHMaMTNDj3EL48Uho5ijyZ6Z6h12CdpbdKBuoHGT6Q9QpdZj0gnDzCbw3SycrMPP12WdOfwZ_u_HfYhJV-SMwt9wKtjH5P3p8fV_CVbLJ9f5_eLDHklY2br1iBDaWtmuQTRYNGpTtWtMMoIAw2XosCirdMjqjEAqmpkJxvTGmFTlWNyc8jdQTDQWw-DcUHvvNuA3-siASlU2STf3cGH6Zhvh14H43Aw2DmfDtfd1mnO9B9dvdZHuvqPrmZSJ7rlLw9KcVk</recordid><startdate>20141001</startdate><enddate>20141001</enddate><creator>Ehmke, Matthias C.</creator><creator>Schader, Florian H.</creator><creator>Webber, Kyle G.</creator><creator>Rödel, Jürgen</creator><creator>Blendell, John E.</creator><creator>Bowman, Keith J.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope></search><sort><creationdate>20141001</creationdate><title>Stress, temperature and electric field effects in the lead-free (Ba,Ca)(Ti,Zr)O3 piezoelectric system</title><author>Ehmke, Matthias C. ; Schader, Florian H. ; Webber, Kyle G. ; Rödel, Jürgen ; Blendell, John E. ; Bowman, Keith J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-e156t-f8bce0e6f80f16a49e2d7d78b4c7c4ca91642e2b864579caa7596d69cbc4ffff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Actuator</topic><topic>Applied sciences</topic><topic>BZT-BCT</topic><topic>Exact sciences and technology</topic><topic>Ferroelasticity</topic><topic>Ferroelectrics</topic><topic>Lead-free</topic><topic>Metals. Metallurgy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ehmke, Matthias C.</creatorcontrib><creatorcontrib>Schader, Florian H.</creatorcontrib><creatorcontrib>Webber, Kyle G.</creatorcontrib><creatorcontrib>Rödel, Jürgen</creatorcontrib><creatorcontrib>Blendell, John E.</creatorcontrib><creatorcontrib>Bowman, Keith J.</creatorcontrib><collection>Pascal-Francis</collection><jtitle>Acta materialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ehmke, Matthias C.</au><au>Schader, Florian H.</au><au>Webber, Kyle G.</au><au>Rödel, Jürgen</au><au>Blendell, John E.</au><au>Bowman, Keith J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stress, temperature and electric field effects in the lead-free (Ba,Ca)(Ti,Zr)O3 piezoelectric system</atitle><jtitle>Acta materialia</jtitle><date>2014-10-01</date><risdate>2014</risdate><volume>78</volume><spage>37</spage><epage>45</epage><pages>37-45</pages><issn>1359-6454</issn><eissn>1873-2453</eissn><abstract>The large signal strain response as a function of uniaxial compressive stress, electric field and temperature is investigated for compositions across the morphotropic phase boundary in the (Ba,Ca)(Ti,Zr)O3 ferroelectric system. The largest piezoelectric coefficient in terms of unipolar strain divided by the maximum applied field, Su/Emax, is 1540pmV−1, which clearly exceeds the piezoelectric response of most lead zirconate titanate materials. The extraordinarily large piezoelectric properties occur in the vicinity of the morphotropic phase boundary region on the rhombohedral side of the phase diagram. In this material, an electric threshold field is observed that is required to overcome the stress-induced domain clamping and obtain a measurable strain response. Moreover, the study reveals that careful selection of composition, stress and field amplitude allow for large signal piezoelectric coefficients of over 740pmV−1 in the temperature range of 25–75°C. The extraordinarily large unipolar strain response can be assigned to an electric field-controlled regime, in which the unipolar compressive stress induces non-180° domain switching perpendicular to the applied electric field. During electrical loading, the electric field can realign these domains back into the parallel direction, maximizing non-180° domain switching and enhancing unipolar strain.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.actamat.2014.06.005</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1359-6454 |
ispartof | Acta materialia, 2014-10, Vol.78, p.37-45 |
issn | 1359-6454 1873-2453 |
language | eng |
recordid | cdi_pascalfrancis_primary_28732739 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Actuator Applied sciences BZT-BCT Exact sciences and technology Ferroelasticity Ferroelectrics Lead-free Metals. Metallurgy |
title | Stress, temperature and electric field effects in the lead-free (Ba,Ca)(Ti,Zr)O3 piezoelectric system |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T00%3A32%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stress,%20temperature%20and%20electric%20field%20effects%20in%20the%20lead-free%20(Ba,Ca)(Ti,Zr)O3%20piezoelectric%20system&rft.jtitle=Acta%20materialia&rft.au=Ehmke,%20Matthias%20C.&rft.date=2014-10-01&rft.volume=78&rft.spage=37&rft.epage=45&rft.pages=37-45&rft.issn=1359-6454&rft.eissn=1873-2453&rft_id=info:doi/10.1016/j.actamat.2014.06.005&rft_dat=%3Celsevier_pasca%3ES135964541400425X%3C/elsevier_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S135964541400425X&rfr_iscdi=true |