Stress, temperature and electric field effects in the lead-free (Ba,Ca)(Ti,Zr)O3 piezoelectric system

The large signal strain response as a function of uniaxial compressive stress, electric field and temperature is investigated for compositions across the morphotropic phase boundary in the (Ba,Ca)(Ti,Zr)O3 ferroelectric system. The largest piezoelectric coefficient in terms of unipolar strain divide...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta materialia 2014-10, Vol.78, p.37-45
Hauptverfasser: Ehmke, Matthias C., Schader, Florian H., Webber, Kyle G., Rödel, Jürgen, Blendell, John E., Bowman, Keith J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 45
container_issue
container_start_page 37
container_title Acta materialia
container_volume 78
creator Ehmke, Matthias C.
Schader, Florian H.
Webber, Kyle G.
Rödel, Jürgen
Blendell, John E.
Bowman, Keith J.
description The large signal strain response as a function of uniaxial compressive stress, electric field and temperature is investigated for compositions across the morphotropic phase boundary in the (Ba,Ca)(Ti,Zr)O3 ferroelectric system. The largest piezoelectric coefficient in terms of unipolar strain divided by the maximum applied field, Su/Emax, is 1540pmV−1, which clearly exceeds the piezoelectric response of most lead zirconate titanate materials. The extraordinarily large piezoelectric properties occur in the vicinity of the morphotropic phase boundary region on the rhombohedral side of the phase diagram. In this material, an electric threshold field is observed that is required to overcome the stress-induced domain clamping and obtain a measurable strain response. Moreover, the study reveals that careful selection of composition, stress and field amplitude allow for large signal piezoelectric coefficients of over 740pmV−1 in the temperature range of 25–75°C. The extraordinarily large unipolar strain response can be assigned to an electric field-controlled regime, in which the unipolar compressive stress induces non-180° domain switching perpendicular to the applied electric field. During electrical loading, the electric field can realign these domains back into the parallel direction, maximizing non-180° domain switching and enhancing unipolar strain.
doi_str_mv 10.1016/j.actamat.2014.06.005
format Article
fullrecord <record><control><sourceid>elsevier_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_28732739</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S135964541400425X</els_id><sourcerecordid>S135964541400425X</sourcerecordid><originalsourceid>FETCH-LOGICAL-e156t-f8bce0e6f80f16a49e2d7d78b4c7c4ca91642e2b864579caa7596d69cbc4ffff3</originalsourceid><addsrcrecordid>eNo9kE9LAzEQxYMoWKsfQchFaKG7JrvZZPckWvwHhR6sFy9hNjvBlO22JFGon95Ii3OZefDmMfMj5JqznDMub9c5mAgbiHnBuMiZzBmrTsiI16rMClGVp2kuqyaTohLn5CKENWO8UIKNCL5FjyHMaMTNDj3EL48Uho5ijyZ6Z6h12CdpbdKBuoHGT6Q9QpdZj0gnDzCbw3SycrMPP12WdOfwZ_u_HfYhJV-SMwt9wKtjH5P3p8fV_CVbLJ9f5_eLDHklY2br1iBDaWtmuQTRYNGpTtWtMMoIAw2XosCirdMjqjEAqmpkJxvTGmFTlWNyc8jdQTDQWw-DcUHvvNuA3-siASlU2STf3cGH6Zhvh14H43Aw2DmfDtfd1mnO9B9dvdZHuvqPrmZSJ7rlLw9KcVk</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Stress, temperature and electric field effects in the lead-free (Ba,Ca)(Ti,Zr)O3 piezoelectric system</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Ehmke, Matthias C. ; Schader, Florian H. ; Webber, Kyle G. ; Rödel, Jürgen ; Blendell, John E. ; Bowman, Keith J.</creator><creatorcontrib>Ehmke, Matthias C. ; Schader, Florian H. ; Webber, Kyle G. ; Rödel, Jürgen ; Blendell, John E. ; Bowman, Keith J.</creatorcontrib><description>The large signal strain response as a function of uniaxial compressive stress, electric field and temperature is investigated for compositions across the morphotropic phase boundary in the (Ba,Ca)(Ti,Zr)O3 ferroelectric system. The largest piezoelectric coefficient in terms of unipolar strain divided by the maximum applied field, Su/Emax, is 1540pmV−1, which clearly exceeds the piezoelectric response of most lead zirconate titanate materials. The extraordinarily large piezoelectric properties occur in the vicinity of the morphotropic phase boundary region on the rhombohedral side of the phase diagram. In this material, an electric threshold field is observed that is required to overcome the stress-induced domain clamping and obtain a measurable strain response. Moreover, the study reveals that careful selection of composition, stress and field amplitude allow for large signal piezoelectric coefficients of over 740pmV−1 in the temperature range of 25–75°C. The extraordinarily large unipolar strain response can be assigned to an electric field-controlled regime, in which the unipolar compressive stress induces non-180° domain switching perpendicular to the applied electric field. During electrical loading, the electric field can realign these domains back into the parallel direction, maximizing non-180° domain switching and enhancing unipolar strain.</description><identifier>ISSN: 1359-6454</identifier><identifier>EISSN: 1873-2453</identifier><identifier>DOI: 10.1016/j.actamat.2014.06.005</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Actuator ; Applied sciences ; BZT-BCT ; Exact sciences and technology ; Ferroelasticity ; Ferroelectrics ; Lead-free ; Metals. Metallurgy</subject><ispartof>Acta materialia, 2014-10, Vol.78, p.37-45</ispartof><rights>2014 Acta Materialia Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.actamat.2014.06.005$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28732739$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ehmke, Matthias C.</creatorcontrib><creatorcontrib>Schader, Florian H.</creatorcontrib><creatorcontrib>Webber, Kyle G.</creatorcontrib><creatorcontrib>Rödel, Jürgen</creatorcontrib><creatorcontrib>Blendell, John E.</creatorcontrib><creatorcontrib>Bowman, Keith J.</creatorcontrib><title>Stress, temperature and electric field effects in the lead-free (Ba,Ca)(Ti,Zr)O3 piezoelectric system</title><title>Acta materialia</title><description>The large signal strain response as a function of uniaxial compressive stress, electric field and temperature is investigated for compositions across the morphotropic phase boundary in the (Ba,Ca)(Ti,Zr)O3 ferroelectric system. The largest piezoelectric coefficient in terms of unipolar strain divided by the maximum applied field, Su/Emax, is 1540pmV−1, which clearly exceeds the piezoelectric response of most lead zirconate titanate materials. The extraordinarily large piezoelectric properties occur in the vicinity of the morphotropic phase boundary region on the rhombohedral side of the phase diagram. In this material, an electric threshold field is observed that is required to overcome the stress-induced domain clamping and obtain a measurable strain response. Moreover, the study reveals that careful selection of composition, stress and field amplitude allow for large signal piezoelectric coefficients of over 740pmV−1 in the temperature range of 25–75°C. The extraordinarily large unipolar strain response can be assigned to an electric field-controlled regime, in which the unipolar compressive stress induces non-180° domain switching perpendicular to the applied electric field. During electrical loading, the electric field can realign these domains back into the parallel direction, maximizing non-180° domain switching and enhancing unipolar strain.</description><subject>Actuator</subject><subject>Applied sciences</subject><subject>BZT-BCT</subject><subject>Exact sciences and technology</subject><subject>Ferroelasticity</subject><subject>Ferroelectrics</subject><subject>Lead-free</subject><subject>Metals. Metallurgy</subject><issn>1359-6454</issn><issn>1873-2453</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNo9kE9LAzEQxYMoWKsfQchFaKG7JrvZZPckWvwHhR6sFy9hNjvBlO22JFGon95Ii3OZefDmMfMj5JqznDMub9c5mAgbiHnBuMiZzBmrTsiI16rMClGVp2kuqyaTohLn5CKENWO8UIKNCL5FjyHMaMTNDj3EL48Uho5ijyZ6Z6h12CdpbdKBuoHGT6Q9QpdZj0gnDzCbw3SycrMPP12WdOfwZ_u_HfYhJV-SMwt9wKtjH5P3p8fV_CVbLJ9f5_eLDHklY2br1iBDaWtmuQTRYNGpTtWtMMoIAw2XosCirdMjqjEAqmpkJxvTGmFTlWNyc8jdQTDQWw-DcUHvvNuA3-siASlU2STf3cGH6Zhvh14H43Aw2DmfDtfd1mnO9B9dvdZHuvqPrmZSJ7rlLw9KcVk</recordid><startdate>20141001</startdate><enddate>20141001</enddate><creator>Ehmke, Matthias C.</creator><creator>Schader, Florian H.</creator><creator>Webber, Kyle G.</creator><creator>Rödel, Jürgen</creator><creator>Blendell, John E.</creator><creator>Bowman, Keith J.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope></search><sort><creationdate>20141001</creationdate><title>Stress, temperature and electric field effects in the lead-free (Ba,Ca)(Ti,Zr)O3 piezoelectric system</title><author>Ehmke, Matthias C. ; Schader, Florian H. ; Webber, Kyle G. ; Rödel, Jürgen ; Blendell, John E. ; Bowman, Keith J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-e156t-f8bce0e6f80f16a49e2d7d78b4c7c4ca91642e2b864579caa7596d69cbc4ffff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Actuator</topic><topic>Applied sciences</topic><topic>BZT-BCT</topic><topic>Exact sciences and technology</topic><topic>Ferroelasticity</topic><topic>Ferroelectrics</topic><topic>Lead-free</topic><topic>Metals. Metallurgy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ehmke, Matthias C.</creatorcontrib><creatorcontrib>Schader, Florian H.</creatorcontrib><creatorcontrib>Webber, Kyle G.</creatorcontrib><creatorcontrib>Rödel, Jürgen</creatorcontrib><creatorcontrib>Blendell, John E.</creatorcontrib><creatorcontrib>Bowman, Keith J.</creatorcontrib><collection>Pascal-Francis</collection><jtitle>Acta materialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ehmke, Matthias C.</au><au>Schader, Florian H.</au><au>Webber, Kyle G.</au><au>Rödel, Jürgen</au><au>Blendell, John E.</au><au>Bowman, Keith J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stress, temperature and electric field effects in the lead-free (Ba,Ca)(Ti,Zr)O3 piezoelectric system</atitle><jtitle>Acta materialia</jtitle><date>2014-10-01</date><risdate>2014</risdate><volume>78</volume><spage>37</spage><epage>45</epage><pages>37-45</pages><issn>1359-6454</issn><eissn>1873-2453</eissn><abstract>The large signal strain response as a function of uniaxial compressive stress, electric field and temperature is investigated for compositions across the morphotropic phase boundary in the (Ba,Ca)(Ti,Zr)O3 ferroelectric system. The largest piezoelectric coefficient in terms of unipolar strain divided by the maximum applied field, Su/Emax, is 1540pmV−1, which clearly exceeds the piezoelectric response of most lead zirconate titanate materials. The extraordinarily large piezoelectric properties occur in the vicinity of the morphotropic phase boundary region on the rhombohedral side of the phase diagram. In this material, an electric threshold field is observed that is required to overcome the stress-induced domain clamping and obtain a measurable strain response. Moreover, the study reveals that careful selection of composition, stress and field amplitude allow for large signal piezoelectric coefficients of over 740pmV−1 in the temperature range of 25–75°C. The extraordinarily large unipolar strain response can be assigned to an electric field-controlled regime, in which the unipolar compressive stress induces non-180° domain switching perpendicular to the applied electric field. During electrical loading, the electric field can realign these domains back into the parallel direction, maximizing non-180° domain switching and enhancing unipolar strain.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.actamat.2014.06.005</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1359-6454
ispartof Acta materialia, 2014-10, Vol.78, p.37-45
issn 1359-6454
1873-2453
language eng
recordid cdi_pascalfrancis_primary_28732739
source Elsevier ScienceDirect Journals Complete
subjects Actuator
Applied sciences
BZT-BCT
Exact sciences and technology
Ferroelasticity
Ferroelectrics
Lead-free
Metals. Metallurgy
title Stress, temperature and electric field effects in the lead-free (Ba,Ca)(Ti,Zr)O3 piezoelectric system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T00%3A32%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stress,%20temperature%20and%20electric%20field%20effects%20in%20the%20lead-free%20(Ba,Ca)(Ti,Zr)O3%20piezoelectric%20system&rft.jtitle=Acta%20materialia&rft.au=Ehmke,%20Matthias%20C.&rft.date=2014-10-01&rft.volume=78&rft.spage=37&rft.epage=45&rft.pages=37-45&rft.issn=1359-6454&rft.eissn=1873-2453&rft_id=info:doi/10.1016/j.actamat.2014.06.005&rft_dat=%3Celsevier_pasca%3ES135964541400425X%3C/elsevier_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S135964541400425X&rfr_iscdi=true