Manufacturing of the Iseult/INUMAC Whole Body 11.7 T MRI Magnet

As part the Iseult/Inumac project, a French-German initiative focused on very high magnetic-field molecular imaging, the Whole Body 11.7 T MRI Magnet currently under development is the world's largest to-date. It is an actively shielded magnet system, manufactured from NbTi superconductor, with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on applied superconductivity 2014-06, Vol.24 (3), p.1-6
Hauptverfasser: Vedrine, P., Aubert, G., Belorgey, J., Berriaud, C., Bourquard, A., Bredy, Ph, Donati, A., Dubois, O., Elefant, F., Gilgrass, G., Juster, F. P., Lannou, H., Molinie, F., Nusbaum, M., Nunio, F., Payn, A., Quettier, L., Schild, T., Scola, L., Sinanna, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6
container_issue 3
container_start_page 1
container_title IEEE transactions on applied superconductivity
container_volume 24
creator Vedrine, P.
Aubert, G.
Belorgey, J.
Berriaud, C.
Bourquard, A.
Bredy, Ph
Donati, A.
Dubois, O.
Elefant, F.
Gilgrass, G.
Juster, F. P.
Lannou, H.
Molinie, F.
Nusbaum, M.
Nunio, F.
Payn, A.
Quettier, L.
Schild, T.
Scola, L.
Sinanna, A.
description As part the Iseult/Inumac project, a French-German initiative focused on very high magnetic-field molecular imaging, the Whole Body 11.7 T MRI Magnet currently under development is the world's largest to-date. It is an actively shielded magnet system, manufactured from NbTi superconductor, with a homogeneous field level of 11.75 T within a 90 cm warm bore. It will operate at a current of 1483 A, in nonpersistent mode, in a bath of superfluid LHe at 1.8 K. The stored energy is 338 MJ and the inductance 308 H. The cryostat has external dimensions of 5 m in diameter and 5.2 m in length, the total weight of the magnet is 132 tons. The magnet is serviced by a separate cryogenic and electrical facility forming an integral part of the installation. It is currently being manufactured at Alstom Belfort under the supervision of CEA Saclay. Several reduced scale prototypes, each addressing a specific set of design and manufacturing risks, have been tested. Full-scale serial production of the 170 double pancakes that form the main coil has been finished by Alstom. The project plan includes finishing the cold mass and cryostat assembly in May 2014. Full tests and commissioning of the magnet at 1.8 K will be performed at the Neurospin center upon completion of assembly. The paper reviews the manufacturing status of the 11.7 T magnet and its dedicated equipment.
doi_str_mv 10.1109/TASC.2013.2286256
format Article
fullrecord <record><control><sourceid>pascalfrancis_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_28688362</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6642049</ieee_id><sourcerecordid>28688362</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-a78f6bfb6d691dd497e90dd88e6e57aab43f67fedc4beabba89bb2b084f6a5a63</originalsourceid><addsrcrecordid>eNo9kD1PwzAQQC0EEqXwAxCLF8aktmM79oRKxEekBiRoxRidY7sNCkkVp0P_PaladbqT7r0bHkL3lMSUEj1bzr-zmBGaxIwpyYS8QBMqhIqYoOJy3ImgkWIsuUY3IfwSQrniYoKeCmh3Hqph19ftGnceDxuH8-B2zTDLP1bFPMM_m65x-Lmze0xpnOIlLr5yXMC6dcMtuvLQBHd3mlO0en1ZZu_R4vMtz-aLqGJaDBGkykvjjbRSU2u5Tp0m1irlpBMpgOGJl6l3tuLGgTGgtDHMEMW9BAEymSJ6_Fv1XQi98-W2r_-g35eUlIcC5aFAeShQngqMzuPR2UKooPE9tFUdzuJIKZVINnIPR652zp3PUnJGuE7-ARx1Yxw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Manufacturing of the Iseult/INUMAC Whole Body 11.7 T MRI Magnet</title><source>IEEE Electronic Library (IEL)</source><creator>Vedrine, P. ; Aubert, G. ; Belorgey, J. ; Berriaud, C. ; Bourquard, A. ; Bredy, Ph ; Donati, A. ; Dubois, O. ; Elefant, F. ; Gilgrass, G. ; Juster, F. P. ; Lannou, H. ; Molinie, F. ; Nusbaum, M. ; Nunio, F. ; Payn, A. ; Quettier, L. ; Schild, T. ; Scola, L. ; Sinanna, A.</creator><creatorcontrib>Vedrine, P. ; Aubert, G. ; Belorgey, J. ; Berriaud, C. ; Bourquard, A. ; Bredy, Ph ; Donati, A. ; Dubois, O. ; Elefant, F. ; Gilgrass, G. ; Juster, F. P. ; Lannou, H. ; Molinie, F. ; Nusbaum, M. ; Nunio, F. ; Payn, A. ; Quettier, L. ; Schild, T. ; Scola, L. ; Sinanna, A.</creatorcontrib><description>As part the Iseult/Inumac project, a French-German initiative focused on very high magnetic-field molecular imaging, the Whole Body 11.7 T MRI Magnet currently under development is the world's largest to-date. It is an actively shielded magnet system, manufactured from NbTi superconductor, with a homogeneous field level of 11.75 T within a 90 cm warm bore. It will operate at a current of 1483 A, in nonpersistent mode, in a bath of superfluid LHe at 1.8 K. The stored energy is 338 MJ and the inductance 308 H. The cryostat has external dimensions of 5 m in diameter and 5.2 m in length, the total weight of the magnet is 132 tons. The magnet is serviced by a separate cryogenic and electrical facility forming an integral part of the installation. It is currently being manufactured at Alstom Belfort under the supervision of CEA Saclay. Several reduced scale prototypes, each addressing a specific set of design and manufacturing risks, have been tested. Full-scale serial production of the 170 double pancakes that form the main coil has been finished by Alstom. The project plan includes finishing the cold mass and cryostat assembly in May 2014. Full tests and commissioning of the magnet at 1.8 K will be performed at the Neurospin center upon completion of assembly. The paper reviews the manufacturing status of the 11.7 T magnet and its dedicated equipment.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2013.2286256</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Assembly ; Coils ; Electrical engineering. Electrical power engineering ; Electromagnets ; Exact sciences and technology ; Magnetic noise ; Magnetic resonance imaging ; Magnetic separation ; Magnetic shielding ; niobium titanium ; superconducting magnet ; Superconducting magnets ; Various equipment and components</subject><ispartof>IEEE transactions on applied superconductivity, 2014-06, Vol.24 (3), p.1-6</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-a78f6bfb6d691dd497e90dd88e6e57aab43f67fedc4beabba89bb2b084f6a5a63</citedby><cites>FETCH-LOGICAL-c295t-a78f6bfb6d691dd497e90dd88e6e57aab43f67fedc4beabba89bb2b084f6a5a63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6642049$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,792,23909,23910,25118,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6642049$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28688362$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Vedrine, P.</creatorcontrib><creatorcontrib>Aubert, G.</creatorcontrib><creatorcontrib>Belorgey, J.</creatorcontrib><creatorcontrib>Berriaud, C.</creatorcontrib><creatorcontrib>Bourquard, A.</creatorcontrib><creatorcontrib>Bredy, Ph</creatorcontrib><creatorcontrib>Donati, A.</creatorcontrib><creatorcontrib>Dubois, O.</creatorcontrib><creatorcontrib>Elefant, F.</creatorcontrib><creatorcontrib>Gilgrass, G.</creatorcontrib><creatorcontrib>Juster, F. P.</creatorcontrib><creatorcontrib>Lannou, H.</creatorcontrib><creatorcontrib>Molinie, F.</creatorcontrib><creatorcontrib>Nusbaum, M.</creatorcontrib><creatorcontrib>Nunio, F.</creatorcontrib><creatorcontrib>Payn, A.</creatorcontrib><creatorcontrib>Quettier, L.</creatorcontrib><creatorcontrib>Schild, T.</creatorcontrib><creatorcontrib>Scola, L.</creatorcontrib><creatorcontrib>Sinanna, A.</creatorcontrib><title>Manufacturing of the Iseult/INUMAC Whole Body 11.7 T MRI Magnet</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>As part the Iseult/Inumac project, a French-German initiative focused on very high magnetic-field molecular imaging, the Whole Body 11.7 T MRI Magnet currently under development is the world's largest to-date. It is an actively shielded magnet system, manufactured from NbTi superconductor, with a homogeneous field level of 11.75 T within a 90 cm warm bore. It will operate at a current of 1483 A, in nonpersistent mode, in a bath of superfluid LHe at 1.8 K. The stored energy is 338 MJ and the inductance 308 H. The cryostat has external dimensions of 5 m in diameter and 5.2 m in length, the total weight of the magnet is 132 tons. The magnet is serviced by a separate cryogenic and electrical facility forming an integral part of the installation. It is currently being manufactured at Alstom Belfort under the supervision of CEA Saclay. Several reduced scale prototypes, each addressing a specific set of design and manufacturing risks, have been tested. Full-scale serial production of the 170 double pancakes that form the main coil has been finished by Alstom. The project plan includes finishing the cold mass and cryostat assembly in May 2014. Full tests and commissioning of the magnet at 1.8 K will be performed at the Neurospin center upon completion of assembly. The paper reviews the manufacturing status of the 11.7 T magnet and its dedicated equipment.</description><subject>Applied sciences</subject><subject>Assembly</subject><subject>Coils</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electromagnets</subject><subject>Exact sciences and technology</subject><subject>Magnetic noise</subject><subject>Magnetic resonance imaging</subject><subject>Magnetic separation</subject><subject>Magnetic shielding</subject><subject>niobium titanium</subject><subject>superconducting magnet</subject><subject>Superconducting magnets</subject><subject>Various equipment and components</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kD1PwzAQQC0EEqXwAxCLF8aktmM79oRKxEekBiRoxRidY7sNCkkVp0P_PaladbqT7r0bHkL3lMSUEj1bzr-zmBGaxIwpyYS8QBMqhIqYoOJy3ImgkWIsuUY3IfwSQrniYoKeCmh3Hqph19ftGnceDxuH8-B2zTDLP1bFPMM_m65x-Lmze0xpnOIlLr5yXMC6dcMtuvLQBHd3mlO0en1ZZu_R4vMtz-aLqGJaDBGkykvjjbRSU2u5Tp0m1irlpBMpgOGJl6l3tuLGgTGgtDHMEMW9BAEymSJ6_Fv1XQi98-W2r_-g35eUlIcC5aFAeShQngqMzuPR2UKooPE9tFUdzuJIKZVINnIPR652zp3PUnJGuE7-ARx1Yxw</recordid><startdate>20140601</startdate><enddate>20140601</enddate><creator>Vedrine, P.</creator><creator>Aubert, G.</creator><creator>Belorgey, J.</creator><creator>Berriaud, C.</creator><creator>Bourquard, A.</creator><creator>Bredy, Ph</creator><creator>Donati, A.</creator><creator>Dubois, O.</creator><creator>Elefant, F.</creator><creator>Gilgrass, G.</creator><creator>Juster, F. P.</creator><creator>Lannou, H.</creator><creator>Molinie, F.</creator><creator>Nusbaum, M.</creator><creator>Nunio, F.</creator><creator>Payn, A.</creator><creator>Quettier, L.</creator><creator>Schild, T.</creator><creator>Scola, L.</creator><creator>Sinanna, A.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20140601</creationdate><title>Manufacturing of the Iseult/INUMAC Whole Body 11.7 T MRI Magnet</title><author>Vedrine, P. ; Aubert, G. ; Belorgey, J. ; Berriaud, C. ; Bourquard, A. ; Bredy, Ph ; Donati, A. ; Dubois, O. ; Elefant, F. ; Gilgrass, G. ; Juster, F. P. ; Lannou, H. ; Molinie, F. ; Nusbaum, M. ; Nunio, F. ; Payn, A. ; Quettier, L. ; Schild, T. ; Scola, L. ; Sinanna, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-a78f6bfb6d691dd497e90dd88e6e57aab43f67fedc4beabba89bb2b084f6a5a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied sciences</topic><topic>Assembly</topic><topic>Coils</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electromagnets</topic><topic>Exact sciences and technology</topic><topic>Magnetic noise</topic><topic>Magnetic resonance imaging</topic><topic>Magnetic separation</topic><topic>Magnetic shielding</topic><topic>niobium titanium</topic><topic>superconducting magnet</topic><topic>Superconducting magnets</topic><topic>Various equipment and components</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vedrine, P.</creatorcontrib><creatorcontrib>Aubert, G.</creatorcontrib><creatorcontrib>Belorgey, J.</creatorcontrib><creatorcontrib>Berriaud, C.</creatorcontrib><creatorcontrib>Bourquard, A.</creatorcontrib><creatorcontrib>Bredy, Ph</creatorcontrib><creatorcontrib>Donati, A.</creatorcontrib><creatorcontrib>Dubois, O.</creatorcontrib><creatorcontrib>Elefant, F.</creatorcontrib><creatorcontrib>Gilgrass, G.</creatorcontrib><creatorcontrib>Juster, F. P.</creatorcontrib><creatorcontrib>Lannou, H.</creatorcontrib><creatorcontrib>Molinie, F.</creatorcontrib><creatorcontrib>Nusbaum, M.</creatorcontrib><creatorcontrib>Nunio, F.</creatorcontrib><creatorcontrib>Payn, A.</creatorcontrib><creatorcontrib>Quettier, L.</creatorcontrib><creatorcontrib>Schild, T.</creatorcontrib><creatorcontrib>Scola, L.</creatorcontrib><creatorcontrib>Sinanna, A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Vedrine, P.</au><au>Aubert, G.</au><au>Belorgey, J.</au><au>Berriaud, C.</au><au>Bourquard, A.</au><au>Bredy, Ph</au><au>Donati, A.</au><au>Dubois, O.</au><au>Elefant, F.</au><au>Gilgrass, G.</au><au>Juster, F. P.</au><au>Lannou, H.</au><au>Molinie, F.</au><au>Nusbaum, M.</au><au>Nunio, F.</au><au>Payn, A.</au><au>Quettier, L.</au><au>Schild, T.</au><au>Scola, L.</au><au>Sinanna, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Manufacturing of the Iseult/INUMAC Whole Body 11.7 T MRI Magnet</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>2014-06-01</date><risdate>2014</risdate><volume>24</volume><issue>3</issue><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>As part the Iseult/Inumac project, a French-German initiative focused on very high magnetic-field molecular imaging, the Whole Body 11.7 T MRI Magnet currently under development is the world's largest to-date. It is an actively shielded magnet system, manufactured from NbTi superconductor, with a homogeneous field level of 11.75 T within a 90 cm warm bore. It will operate at a current of 1483 A, in nonpersistent mode, in a bath of superfluid LHe at 1.8 K. The stored energy is 338 MJ and the inductance 308 H. The cryostat has external dimensions of 5 m in diameter and 5.2 m in length, the total weight of the magnet is 132 tons. The magnet is serviced by a separate cryogenic and electrical facility forming an integral part of the installation. It is currently being manufactured at Alstom Belfort under the supervision of CEA Saclay. Several reduced scale prototypes, each addressing a specific set of design and manufacturing risks, have been tested. Full-scale serial production of the 170 double pancakes that form the main coil has been finished by Alstom. The project plan includes finishing the cold mass and cryostat assembly in May 2014. Full tests and commissioning of the magnet at 1.8 K will be performed at the Neurospin center upon completion of assembly. The paper reviews the manufacturing status of the 11.7 T magnet and its dedicated equipment.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TASC.2013.2286256</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-8223
ispartof IEEE transactions on applied superconductivity, 2014-06, Vol.24 (3), p.1-6
issn 1051-8223
1558-2515
language eng
recordid cdi_pascalfrancis_primary_28688362
source IEEE Electronic Library (IEL)
subjects Applied sciences
Assembly
Coils
Electrical engineering. Electrical power engineering
Electromagnets
Exact sciences and technology
Magnetic noise
Magnetic resonance imaging
Magnetic separation
Magnetic shielding
niobium titanium
superconducting magnet
Superconducting magnets
Various equipment and components
title Manufacturing of the Iseult/INUMAC Whole Body 11.7 T MRI Magnet
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T17%3A31%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Manufacturing%20of%20the%20Iseult/INUMAC%20Whole%20Body%2011.7%20T%20MRI%20Magnet&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Vedrine,%20P.&rft.date=2014-06-01&rft.volume=24&rft.issue=3&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/TASC.2013.2286256&rft_dat=%3Cpascalfrancis_RIE%3E28688362%3C/pascalfrancis_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6642049&rfr_iscdi=true