Outage Capacity for the Optical MIMO Channel

Multiple-input and multiple-output processing techniques in fiber optical communications have been proposed as a promising approach to meet increasing demand for information throughput. In this context, the multiple channels correspond to the multiple modes or multiple cores or both in the fiber. In...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2014-07, Vol.60 (7), p.4370-4382
Hauptverfasser: Karadimitrakis, Apostolos, Moustakas, Aris L., Vivo, Pierpaolo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4382
container_issue 7
container_start_page 4370
container_title IEEE transactions on information theory
container_volume 60
creator Karadimitrakis, Apostolos
Moustakas, Aris L.
Vivo, Pierpaolo
description Multiple-input and multiple-output processing techniques in fiber optical communications have been proposed as a promising approach to meet increasing demand for information throughput. In this context, the multiple channels correspond to the multiple modes or multiple cores or both in the fiber. In this paper, we characterize the distribution of the mutual information with Gaussian input in a simple channel model for this system. Assuming significant crosstalk between cores, negligible backscattering and near-lossless propagation in the fiber, we model the transmission channel as a random complex unitary matrix. The loss in the transmission may be parameterized by a number of unutilized channels in the fiber. We analyze the system in a dual fashion. First, we evaluate a closed-form expression for the outage probability, which is handy for small matrices. We also apply the asymptotic approach, in particular the Coulomb gas method from statistical mechanics, to obtain closed-form results for the ergodic mutual information, its variance as well as the outage probability for Gaussian input in the limit of large number of cores/modes. By comparing our analytic results to simulations, we see that, despite the fact that this method is nominally valid for large number of modes, our method is quite accurate even for small to modest number of channels.
doi_str_mv 10.1109/TIT.2014.2320518
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_28603582</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6832874</ieee_id><sourcerecordid>1753520081</sourcerecordid><originalsourceid>FETCH-LOGICAL-c401t-cd30c9526afd27be9bd44796336239187024b81f0966313ad50efe54e06ba56d3</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhhdRsFbvgpeACB5MndmvbI4S_Ci05FLPyybZ2JQ0ibvpof_eLS09eBqGed6X4SHkHmGGCOnrar6aUUA-o4yCQHVBJihEEqdS8EsyAUAVp5yra3Lj_SasXCCdkJd8N5ofG2VmMGUz7qO6d9G4tlE-jE1p2mg5X-ZRtjZdZ9tbclWb1tu705yS74_3VfYVL_LPefa2iEsOOMZlxaBMBZWmrmhS2LSoOE9SyZikLEWVAOWFwhpSKRkyUwmwtRXcgiyMkBWbkudj7-D63531o942vrRtazrb77zGRDBBARQG9PEfuul3rgvfaRQchAKUECg4UqXrvXe21oNrtsbtNYI-6NNBnz7o0yd9IfJ0KjY-eKid6crGn3NUhVqhaOAejlxjrT2fpWJUJZz9AWNOdD0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1540580160</pqid></control><display><type>article</type><title>Outage Capacity for the Optical MIMO Channel</title><source>IEEE Xplore (Online service)</source><creator>Karadimitrakis, Apostolos ; Moustakas, Aris L. ; Vivo, Pierpaolo</creator><creatorcontrib>Karadimitrakis, Apostolos ; Moustakas, Aris L. ; Vivo, Pierpaolo</creatorcontrib><description>Multiple-input and multiple-output processing techniques in fiber optical communications have been proposed as a promising approach to meet increasing demand for information throughput. In this context, the multiple channels correspond to the multiple modes or multiple cores or both in the fiber. In this paper, we characterize the distribution of the mutual information with Gaussian input in a simple channel model for this system. Assuming significant crosstalk between cores, negligible backscattering and near-lossless propagation in the fiber, we model the transmission channel as a random complex unitary matrix. The loss in the transmission may be parameterized by a number of unutilized channels in the fiber. We analyze the system in a dual fashion. First, we evaluate a closed-form expression for the outage probability, which is handy for small matrices. We also apply the asymptotic approach, in particular the Coulomb gas method from statistical mechanics, to obtain closed-form results for the ergodic mutual information, its variance as well as the outage probability for Gaussian input in the limit of large number of cores/modes. By comparing our analytic results to simulations, we see that, despite the fact that this method is nominally valid for large number of modes, our method is quite accurate even for small to modest number of channels.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2014.2320518</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Accuracy ; Applied sciences ; Asymptotic properties ; Channels ; Detection, estimation, filtering, equalization, prediction ; Eigenvalues and eigenfunctions ; Ergodic processes ; Exact sciences and technology ; Exact solutions ; Fibers ; Gaussian ; Information theory ; Information, signal and communications theory ; Mathematical analysis ; Matrix ; MIMO ; Mutual information ; Normal distribution ; Optical fiber communications ; Optical receivers ; Optical scattering ; Optical telecommunications ; Outages ; Probability ; Propagation ; Signal and communications theory ; Signal, noise ; Statistical mechanics ; Systems, networks and services of telecommunications ; Telecommunications ; Telecommunications and information theory ; Transmission and modulation (techniques and equipments) ; Wireless communication</subject><ispartof>IEEE transactions on information theory, 2014-07, Vol.60 (7), p.4370-4382</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jul 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c401t-cd30c9526afd27be9bd44796336239187024b81f0966313ad50efe54e06ba56d3</citedby><cites>FETCH-LOGICAL-c401t-cd30c9526afd27be9bd44796336239187024b81f0966313ad50efe54e06ba56d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6832874$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,796,23930,23931,25140,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6832874$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28603582$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Karadimitrakis, Apostolos</creatorcontrib><creatorcontrib>Moustakas, Aris L.</creatorcontrib><creatorcontrib>Vivo, Pierpaolo</creatorcontrib><title>Outage Capacity for the Optical MIMO Channel</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>Multiple-input and multiple-output processing techniques in fiber optical communications have been proposed as a promising approach to meet increasing demand for information throughput. In this context, the multiple channels correspond to the multiple modes or multiple cores or both in the fiber. In this paper, we characterize the distribution of the mutual information with Gaussian input in a simple channel model for this system. Assuming significant crosstalk between cores, negligible backscattering and near-lossless propagation in the fiber, we model the transmission channel as a random complex unitary matrix. The loss in the transmission may be parameterized by a number of unutilized channels in the fiber. We analyze the system in a dual fashion. First, we evaluate a closed-form expression for the outage probability, which is handy for small matrices. We also apply the asymptotic approach, in particular the Coulomb gas method from statistical mechanics, to obtain closed-form results for the ergodic mutual information, its variance as well as the outage probability for Gaussian input in the limit of large number of cores/modes. By comparing our analytic results to simulations, we see that, despite the fact that this method is nominally valid for large number of modes, our method is quite accurate even for small to modest number of channels.</description><subject>Accuracy</subject><subject>Applied sciences</subject><subject>Asymptotic properties</subject><subject>Channels</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Ergodic processes</subject><subject>Exact sciences and technology</subject><subject>Exact solutions</subject><subject>Fibers</subject><subject>Gaussian</subject><subject>Information theory</subject><subject>Information, signal and communications theory</subject><subject>Mathematical analysis</subject><subject>Matrix</subject><subject>MIMO</subject><subject>Mutual information</subject><subject>Normal distribution</subject><subject>Optical fiber communications</subject><subject>Optical receivers</subject><subject>Optical scattering</subject><subject>Optical telecommunications</subject><subject>Outages</subject><subject>Probability</subject><subject>Propagation</subject><subject>Signal and communications theory</subject><subject>Signal, noise</subject><subject>Statistical mechanics</subject><subject>Systems, networks and services of telecommunications</subject><subject>Telecommunications</subject><subject>Telecommunications and information theory</subject><subject>Transmission and modulation (techniques and equipments)</subject><subject>Wireless communication</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1Lw0AQhhdRsFbvgpeACB5MndmvbI4S_Ci05FLPyybZ2JQ0ibvpof_eLS09eBqGed6X4SHkHmGGCOnrar6aUUA-o4yCQHVBJihEEqdS8EsyAUAVp5yra3Lj_SasXCCdkJd8N5ofG2VmMGUz7qO6d9G4tlE-jE1p2mg5X-ZRtjZdZ9tbclWb1tu705yS74_3VfYVL_LPefa2iEsOOMZlxaBMBZWmrmhS2LSoOE9SyZikLEWVAOWFwhpSKRkyUwmwtRXcgiyMkBWbkudj7-D63531o942vrRtazrb77zGRDBBARQG9PEfuul3rgvfaRQchAKUECg4UqXrvXe21oNrtsbtNYI-6NNBnz7o0yd9IfJ0KjY-eKid6crGn3NUhVqhaOAejlxjrT2fpWJUJZz9AWNOdD0</recordid><startdate>20140701</startdate><enddate>20140701</enddate><creator>Karadimitrakis, Apostolos</creator><creator>Moustakas, Aris L.</creator><creator>Vivo, Pierpaolo</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20140701</creationdate><title>Outage Capacity for the Optical MIMO Channel</title><author>Karadimitrakis, Apostolos ; Moustakas, Aris L. ; Vivo, Pierpaolo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c401t-cd30c9526afd27be9bd44796336239187024b81f0966313ad50efe54e06ba56d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Accuracy</topic><topic>Applied sciences</topic><topic>Asymptotic properties</topic><topic>Channels</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Ergodic processes</topic><topic>Exact sciences and technology</topic><topic>Exact solutions</topic><topic>Fibers</topic><topic>Gaussian</topic><topic>Information theory</topic><topic>Information, signal and communications theory</topic><topic>Mathematical analysis</topic><topic>Matrix</topic><topic>MIMO</topic><topic>Mutual information</topic><topic>Normal distribution</topic><topic>Optical fiber communications</topic><topic>Optical receivers</topic><topic>Optical scattering</topic><topic>Optical telecommunications</topic><topic>Outages</topic><topic>Probability</topic><topic>Propagation</topic><topic>Signal and communications theory</topic><topic>Signal, noise</topic><topic>Statistical mechanics</topic><topic>Systems, networks and services of telecommunications</topic><topic>Telecommunications</topic><topic>Telecommunications and information theory</topic><topic>Transmission and modulation (techniques and equipments)</topic><topic>Wireless communication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karadimitrakis, Apostolos</creatorcontrib><creatorcontrib>Moustakas, Aris L.</creatorcontrib><creatorcontrib>Vivo, Pierpaolo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore (Online service)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Karadimitrakis, Apostolos</au><au>Moustakas, Aris L.</au><au>Vivo, Pierpaolo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Outage Capacity for the Optical MIMO Channel</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2014-07-01</date><risdate>2014</risdate><volume>60</volume><issue>7</issue><spage>4370</spage><epage>4382</epage><pages>4370-4382</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>Multiple-input and multiple-output processing techniques in fiber optical communications have been proposed as a promising approach to meet increasing demand for information throughput. In this context, the multiple channels correspond to the multiple modes or multiple cores or both in the fiber. In this paper, we characterize the distribution of the mutual information with Gaussian input in a simple channel model for this system. Assuming significant crosstalk between cores, negligible backscattering and near-lossless propagation in the fiber, we model the transmission channel as a random complex unitary matrix. The loss in the transmission may be parameterized by a number of unutilized channels in the fiber. We analyze the system in a dual fashion. First, we evaluate a closed-form expression for the outage probability, which is handy for small matrices. We also apply the asymptotic approach, in particular the Coulomb gas method from statistical mechanics, to obtain closed-form results for the ergodic mutual information, its variance as well as the outage probability for Gaussian input in the limit of large number of cores/modes. By comparing our analytic results to simulations, we see that, despite the fact that this method is nominally valid for large number of modes, our method is quite accurate even for small to modest number of channels.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TIT.2014.2320518</doi><tpages>13</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9448
ispartof IEEE transactions on information theory, 2014-07, Vol.60 (7), p.4370-4382
issn 0018-9448
1557-9654
language eng
recordid cdi_pascalfrancis_primary_28603582
source IEEE Xplore (Online service)
subjects Accuracy
Applied sciences
Asymptotic properties
Channels
Detection, estimation, filtering, equalization, prediction
Eigenvalues and eigenfunctions
Ergodic processes
Exact sciences and technology
Exact solutions
Fibers
Gaussian
Information theory
Information, signal and communications theory
Mathematical analysis
Matrix
MIMO
Mutual information
Normal distribution
Optical fiber communications
Optical receivers
Optical scattering
Optical telecommunications
Outages
Probability
Propagation
Signal and communications theory
Signal, noise
Statistical mechanics
Systems, networks and services of telecommunications
Telecommunications
Telecommunications and information theory
Transmission and modulation (techniques and equipments)
Wireless communication
title Outage Capacity for the Optical MIMO Channel
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T06%3A40%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Outage%20Capacity%20for%20the%20Optical%20MIMO%20Channel&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Karadimitrakis,%20Apostolos&rft.date=2014-07-01&rft.volume=60&rft.issue=7&rft.spage=4370&rft.epage=4382&rft.pages=4370-4382&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2014.2320518&rft_dat=%3Cproquest_RIE%3E1753520081%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1540580160&rft_id=info:pmid/&rft_ieee_id=6832874&rfr_iscdi=true