Outage Capacity for the Optical MIMO Channel
Multiple-input and multiple-output processing techniques in fiber optical communications have been proposed as a promising approach to meet increasing demand for information throughput. In this context, the multiple channels correspond to the multiple modes or multiple cores or both in the fiber. In...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information theory 2014-07, Vol.60 (7), p.4370-4382 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4382 |
---|---|
container_issue | 7 |
container_start_page | 4370 |
container_title | IEEE transactions on information theory |
container_volume | 60 |
creator | Karadimitrakis, Apostolos Moustakas, Aris L. Vivo, Pierpaolo |
description | Multiple-input and multiple-output processing techniques in fiber optical communications have been proposed as a promising approach to meet increasing demand for information throughput. In this context, the multiple channels correspond to the multiple modes or multiple cores or both in the fiber. In this paper, we characterize the distribution of the mutual information with Gaussian input in a simple channel model for this system. Assuming significant crosstalk between cores, negligible backscattering and near-lossless propagation in the fiber, we model the transmission channel as a random complex unitary matrix. The loss in the transmission may be parameterized by a number of unutilized channels in the fiber. We analyze the system in a dual fashion. First, we evaluate a closed-form expression for the outage probability, which is handy for small matrices. We also apply the asymptotic approach, in particular the Coulomb gas method from statistical mechanics, to obtain closed-form results for the ergodic mutual information, its variance as well as the outage probability for Gaussian input in the limit of large number of cores/modes. By comparing our analytic results to simulations, we see that, despite the fact that this method is nominally valid for large number of modes, our method is quite accurate even for small to modest number of channels. |
doi_str_mv | 10.1109/TIT.2014.2320518 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_28603582</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6832874</ieee_id><sourcerecordid>1753520081</sourcerecordid><originalsourceid>FETCH-LOGICAL-c401t-cd30c9526afd27be9bd44796336239187024b81f0966313ad50efe54e06ba56d3</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhhdRsFbvgpeACB5MndmvbI4S_Ci05FLPyybZ2JQ0ibvpof_eLS09eBqGed6X4SHkHmGGCOnrar6aUUA-o4yCQHVBJihEEqdS8EsyAUAVp5yra3Lj_SasXCCdkJd8N5ofG2VmMGUz7qO6d9G4tlE-jE1p2mg5X-ZRtjZdZ9tbclWb1tu705yS74_3VfYVL_LPefa2iEsOOMZlxaBMBZWmrmhS2LSoOE9SyZikLEWVAOWFwhpSKRkyUwmwtRXcgiyMkBWbkudj7-D63531o942vrRtazrb77zGRDBBARQG9PEfuul3rgvfaRQchAKUECg4UqXrvXe21oNrtsbtNYI-6NNBnz7o0yd9IfJ0KjY-eKid6crGn3NUhVqhaOAejlxjrT2fpWJUJZz9AWNOdD0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1540580160</pqid></control><display><type>article</type><title>Outage Capacity for the Optical MIMO Channel</title><source>IEEE Xplore (Online service)</source><creator>Karadimitrakis, Apostolos ; Moustakas, Aris L. ; Vivo, Pierpaolo</creator><creatorcontrib>Karadimitrakis, Apostolos ; Moustakas, Aris L. ; Vivo, Pierpaolo</creatorcontrib><description>Multiple-input and multiple-output processing techniques in fiber optical communications have been proposed as a promising approach to meet increasing demand for information throughput. In this context, the multiple channels correspond to the multiple modes or multiple cores or both in the fiber. In this paper, we characterize the distribution of the mutual information with Gaussian input in a simple channel model for this system. Assuming significant crosstalk between cores, negligible backscattering and near-lossless propagation in the fiber, we model the transmission channel as a random complex unitary matrix. The loss in the transmission may be parameterized by a number of unutilized channels in the fiber. We analyze the system in a dual fashion. First, we evaluate a closed-form expression for the outage probability, which is handy for small matrices. We also apply the asymptotic approach, in particular the Coulomb gas method from statistical mechanics, to obtain closed-form results for the ergodic mutual information, its variance as well as the outage probability for Gaussian input in the limit of large number of cores/modes. By comparing our analytic results to simulations, we see that, despite the fact that this method is nominally valid for large number of modes, our method is quite accurate even for small to modest number of channels.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2014.2320518</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Accuracy ; Applied sciences ; Asymptotic properties ; Channels ; Detection, estimation, filtering, equalization, prediction ; Eigenvalues and eigenfunctions ; Ergodic processes ; Exact sciences and technology ; Exact solutions ; Fibers ; Gaussian ; Information theory ; Information, signal and communications theory ; Mathematical analysis ; Matrix ; MIMO ; Mutual information ; Normal distribution ; Optical fiber communications ; Optical receivers ; Optical scattering ; Optical telecommunications ; Outages ; Probability ; Propagation ; Signal and communications theory ; Signal, noise ; Statistical mechanics ; Systems, networks and services of telecommunications ; Telecommunications ; Telecommunications and information theory ; Transmission and modulation (techniques and equipments) ; Wireless communication</subject><ispartof>IEEE transactions on information theory, 2014-07, Vol.60 (7), p.4370-4382</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jul 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c401t-cd30c9526afd27be9bd44796336239187024b81f0966313ad50efe54e06ba56d3</citedby><cites>FETCH-LOGICAL-c401t-cd30c9526afd27be9bd44796336239187024b81f0966313ad50efe54e06ba56d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6832874$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,796,23930,23931,25140,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6832874$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28603582$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Karadimitrakis, Apostolos</creatorcontrib><creatorcontrib>Moustakas, Aris L.</creatorcontrib><creatorcontrib>Vivo, Pierpaolo</creatorcontrib><title>Outage Capacity for the Optical MIMO Channel</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>Multiple-input and multiple-output processing techniques in fiber optical communications have been proposed as a promising approach to meet increasing demand for information throughput. In this context, the multiple channels correspond to the multiple modes or multiple cores or both in the fiber. In this paper, we characterize the distribution of the mutual information with Gaussian input in a simple channel model for this system. Assuming significant crosstalk between cores, negligible backscattering and near-lossless propagation in the fiber, we model the transmission channel as a random complex unitary matrix. The loss in the transmission may be parameterized by a number of unutilized channels in the fiber. We analyze the system in a dual fashion. First, we evaluate a closed-form expression for the outage probability, which is handy for small matrices. We also apply the asymptotic approach, in particular the Coulomb gas method from statistical mechanics, to obtain closed-form results for the ergodic mutual information, its variance as well as the outage probability for Gaussian input in the limit of large number of cores/modes. By comparing our analytic results to simulations, we see that, despite the fact that this method is nominally valid for large number of modes, our method is quite accurate even for small to modest number of channels.</description><subject>Accuracy</subject><subject>Applied sciences</subject><subject>Asymptotic properties</subject><subject>Channels</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Ergodic processes</subject><subject>Exact sciences and technology</subject><subject>Exact solutions</subject><subject>Fibers</subject><subject>Gaussian</subject><subject>Information theory</subject><subject>Information, signal and communications theory</subject><subject>Mathematical analysis</subject><subject>Matrix</subject><subject>MIMO</subject><subject>Mutual information</subject><subject>Normal distribution</subject><subject>Optical fiber communications</subject><subject>Optical receivers</subject><subject>Optical scattering</subject><subject>Optical telecommunications</subject><subject>Outages</subject><subject>Probability</subject><subject>Propagation</subject><subject>Signal and communications theory</subject><subject>Signal, noise</subject><subject>Statistical mechanics</subject><subject>Systems, networks and services of telecommunications</subject><subject>Telecommunications</subject><subject>Telecommunications and information theory</subject><subject>Transmission and modulation (techniques and equipments)</subject><subject>Wireless communication</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1Lw0AQhhdRsFbvgpeACB5MndmvbI4S_Ci05FLPyybZ2JQ0ibvpof_eLS09eBqGed6X4SHkHmGGCOnrar6aUUA-o4yCQHVBJihEEqdS8EsyAUAVp5yra3Lj_SasXCCdkJd8N5ofG2VmMGUz7qO6d9G4tlE-jE1p2mg5X-ZRtjZdZ9tbclWb1tu705yS74_3VfYVL_LPefa2iEsOOMZlxaBMBZWmrmhS2LSoOE9SyZikLEWVAOWFwhpSKRkyUwmwtRXcgiyMkBWbkudj7-D63531o942vrRtazrb77zGRDBBARQG9PEfuul3rgvfaRQchAKUECg4UqXrvXe21oNrtsbtNYI-6NNBnz7o0yd9IfJ0KjY-eKid6crGn3NUhVqhaOAejlxjrT2fpWJUJZz9AWNOdD0</recordid><startdate>20140701</startdate><enddate>20140701</enddate><creator>Karadimitrakis, Apostolos</creator><creator>Moustakas, Aris L.</creator><creator>Vivo, Pierpaolo</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20140701</creationdate><title>Outage Capacity for the Optical MIMO Channel</title><author>Karadimitrakis, Apostolos ; Moustakas, Aris L. ; Vivo, Pierpaolo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c401t-cd30c9526afd27be9bd44796336239187024b81f0966313ad50efe54e06ba56d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Accuracy</topic><topic>Applied sciences</topic><topic>Asymptotic properties</topic><topic>Channels</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Ergodic processes</topic><topic>Exact sciences and technology</topic><topic>Exact solutions</topic><topic>Fibers</topic><topic>Gaussian</topic><topic>Information theory</topic><topic>Information, signal and communications theory</topic><topic>Mathematical analysis</topic><topic>Matrix</topic><topic>MIMO</topic><topic>Mutual information</topic><topic>Normal distribution</topic><topic>Optical fiber communications</topic><topic>Optical receivers</topic><topic>Optical scattering</topic><topic>Optical telecommunications</topic><topic>Outages</topic><topic>Probability</topic><topic>Propagation</topic><topic>Signal and communications theory</topic><topic>Signal, noise</topic><topic>Statistical mechanics</topic><topic>Systems, networks and services of telecommunications</topic><topic>Telecommunications</topic><topic>Telecommunications and information theory</topic><topic>Transmission and modulation (techniques and equipments)</topic><topic>Wireless communication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karadimitrakis, Apostolos</creatorcontrib><creatorcontrib>Moustakas, Aris L.</creatorcontrib><creatorcontrib>Vivo, Pierpaolo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore (Online service)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Karadimitrakis, Apostolos</au><au>Moustakas, Aris L.</au><au>Vivo, Pierpaolo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Outage Capacity for the Optical MIMO Channel</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2014-07-01</date><risdate>2014</risdate><volume>60</volume><issue>7</issue><spage>4370</spage><epage>4382</epage><pages>4370-4382</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>Multiple-input and multiple-output processing techniques in fiber optical communications have been proposed as a promising approach to meet increasing demand for information throughput. In this context, the multiple channels correspond to the multiple modes or multiple cores or both in the fiber. In this paper, we characterize the distribution of the mutual information with Gaussian input in a simple channel model for this system. Assuming significant crosstalk between cores, negligible backscattering and near-lossless propagation in the fiber, we model the transmission channel as a random complex unitary matrix. The loss in the transmission may be parameterized by a number of unutilized channels in the fiber. We analyze the system in a dual fashion. First, we evaluate a closed-form expression for the outage probability, which is handy for small matrices. We also apply the asymptotic approach, in particular the Coulomb gas method from statistical mechanics, to obtain closed-form results for the ergodic mutual information, its variance as well as the outage probability for Gaussian input in the limit of large number of cores/modes. By comparing our analytic results to simulations, we see that, despite the fact that this method is nominally valid for large number of modes, our method is quite accurate even for small to modest number of channels.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TIT.2014.2320518</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9448 |
ispartof | IEEE transactions on information theory, 2014-07, Vol.60 (7), p.4370-4382 |
issn | 0018-9448 1557-9654 |
language | eng |
recordid | cdi_pascalfrancis_primary_28603582 |
source | IEEE Xplore (Online service) |
subjects | Accuracy Applied sciences Asymptotic properties Channels Detection, estimation, filtering, equalization, prediction Eigenvalues and eigenfunctions Ergodic processes Exact sciences and technology Exact solutions Fibers Gaussian Information theory Information, signal and communications theory Mathematical analysis Matrix MIMO Mutual information Normal distribution Optical fiber communications Optical receivers Optical scattering Optical telecommunications Outages Probability Propagation Signal and communications theory Signal, noise Statistical mechanics Systems, networks and services of telecommunications Telecommunications Telecommunications and information theory Transmission and modulation (techniques and equipments) Wireless communication |
title | Outage Capacity for the Optical MIMO Channel |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T06%3A40%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Outage%20Capacity%20for%20the%20Optical%20MIMO%20Channel&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Karadimitrakis,%20Apostolos&rft.date=2014-07-01&rft.volume=60&rft.issue=7&rft.spage=4370&rft.epage=4382&rft.pages=4370-4382&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2014.2320518&rft_dat=%3Cproquest_RIE%3E1753520081%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1540580160&rft_id=info:pmid/&rft_ieee_id=6832874&rfr_iscdi=true |