Material Characterization of Ge1−xSnx Alloys Grown by a Commercial CVD System for Optoelectronic Device Applications

High-quality compressive-strained Ge 1− x Sn x /Ge films have been deposited on Si(001) substrate using a mainstream commercial chemical vapor deposition reactor. The growth temperature was kept below 450°C to be compatible with Si complementary metal–oxide–semiconductor processes. Germanium tin (Ge...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Mosleh, Aboozar, Ghetmiri, Seyed Amir, Conley, Benjamin R., Hawkridge, Michael, Benamara, Mourad, Nazzal, Amjad, Tolle, John, Yu, Shui-Qing, Naseem, Hameed A.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 946
container_issue 4
container_start_page 938
container_title
container_volume 43
creator Mosleh, Aboozar
Ghetmiri, Seyed Amir
Conley, Benjamin R.
Hawkridge, Michael
Benamara, Mourad
Nazzal, Amjad
Tolle, John
Yu, Shui-Qing
Naseem, Hameed A.
description High-quality compressive-strained Ge 1− x Sn x /Ge films have been deposited on Si(001) substrate using a mainstream commercial chemical vapor deposition reactor. The growth temperature was kept below 450°C to be compatible with Si complementary metal–oxide–semiconductor processes. Germanium tin (Ge 1− x Sn x ) layers were grown with different Sn composition ranging from 0.9% to 7%. Material characterizations, such as secondary-ion mass spectrometry, Rutherford backscattering spectrometry, and x-ray diffraction analysis, show stable Sn incorporation in the Ge lattice. Comparison of the Sn mole fractions obtained using these methods shows that the bowing factor of 0.166 nm (in Vegard’s law) is in close agreement with other experimental data. High-resolution transmission electron microscopy and atomic force microscopy results show that the films have started to relax through the formation of misfit and threading dislocations. Raman spectroscopy, ellipsometry, and photoluminescence (PL) techniques are used to study the structural and optical properties of the films. Room-temperature PL of the films shows that 7% Sn incorporation in the Ge lattice results in a decrease in the direct bandgap of Ge from 0.8 eV to 0.56 eV.
doi_str_mv 10.1007/s11664-014-3089-2
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_28580211</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>28580211</sourcerecordid><originalsourceid>FETCH-LOGICAL-p732-f42ac89bbd2201dc6467ae8eed3c61b763272c0a1f28e6170db2c6d89fcdcea93</originalsourceid><addsrcrecordid>eNotkE1OwzAUhC0EEqVwAHbesDT42YnjLKsUClJRF60QO8txHEiVxJEdSsMJWHNETkJ_WD2N3sxo9CF0DfQWKE3uAoAQEaEQEU5lStgJGkEccQJSvJ6iEeUCSMx4fI4uQlhTCjFIGKHNs-6tr3SNs3fttdmLL91XrsWuxDMLv98_22W7xZO6dkPAM-8-W5wPWOPMNY315pB9meLlEHrb4NJ5vOh6Z2treu_ayuCp3VTG4knX1ZU5dIdLdFbqOtir_ztGq4f7VfZI5ovZUzaZky7hjJQR00ameV4wRqEwIhKJttLaghsBeSI4S5ihGkomrYCEFjkzopBpaQpjdcrH6OZY2-lgdF163ZoqqM5XjfaDYjKWlAHsfOzoC7tX-2a9WrsP3-6WKaBqD1gdAasdYLUHrBj_A_kEcRc</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Material Characterization of Ge1−xSnx Alloys Grown by a Commercial CVD System for Optoelectronic Device Applications</title><source>SpringerNature Journals</source><creator>Mosleh, Aboozar ; Ghetmiri, Seyed Amir ; Conley, Benjamin R. ; Hawkridge, Michael ; Benamara, Mourad ; Nazzal, Amjad ; Tolle, John ; Yu, Shui-Qing ; Naseem, Hameed A.</creator><creatorcontrib>Mosleh, Aboozar ; Ghetmiri, Seyed Amir ; Conley, Benjamin R. ; Hawkridge, Michael ; Benamara, Mourad ; Nazzal, Amjad ; Tolle, John ; Yu, Shui-Qing ; Naseem, Hameed A.</creatorcontrib><description>High-quality compressive-strained Ge 1− x Sn x /Ge films have been deposited on Si(001) substrate using a mainstream commercial chemical vapor deposition reactor. The growth temperature was kept below 450°C to be compatible with Si complementary metal–oxide–semiconductor processes. Germanium tin (Ge 1− x Sn x ) layers were grown with different Sn composition ranging from 0.9% to 7%. Material characterizations, such as secondary-ion mass spectrometry, Rutherford backscattering spectrometry, and x-ray diffraction analysis, show stable Sn incorporation in the Ge lattice. Comparison of the Sn mole fractions obtained using these methods shows that the bowing factor of 0.166 nm (in Vegard’s law) is in close agreement with other experimental data. High-resolution transmission electron microscopy and atomic force microscopy results show that the films have started to relax through the formation of misfit and threading dislocations. Raman spectroscopy, ellipsometry, and photoluminescence (PL) techniques are used to study the structural and optical properties of the films. Room-temperature PL of the films shows that 7% Sn incorporation in the Ge lattice results in a decrease in the direct bandgap of Ge from 0.8 eV to 0.56 eV.</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-014-3089-2</identifier><identifier>CODEN: JECMA5</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.) ; Chemistry and Materials Science ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Defects and impurities in crystals; microstructure ; Electronics and Microelectronics ; Exact sciences and technology ; Instrumentation ; Linear defects: dislocations, disclinations ; Materials Science ; Methods of crystal growth; physics of crystal growth ; Methods of deposition of films and coatings; film growth and epitaxy ; Optical and Electronic Materials ; Physics ; Solid State Physics ; Structure of solids and liquids; crystallography ; Structure of specific crystalline solids ; Theory and models of crystal growth; physics of crystal growth, crystal morphology and orientation</subject><ispartof>Journal of electronic materials, 2014, Vol.43 (4), p.938-946</ispartof><rights>TMS 2014</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11664-014-3089-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11664-014-3089-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>310,311,315,781,785,790,791,4051,4052,23935,23936,25145,27929,27930,41493,42562,51324</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28580211$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Mosleh, Aboozar</creatorcontrib><creatorcontrib>Ghetmiri, Seyed Amir</creatorcontrib><creatorcontrib>Conley, Benjamin R.</creatorcontrib><creatorcontrib>Hawkridge, Michael</creatorcontrib><creatorcontrib>Benamara, Mourad</creatorcontrib><creatorcontrib>Nazzal, Amjad</creatorcontrib><creatorcontrib>Tolle, John</creatorcontrib><creatorcontrib>Yu, Shui-Qing</creatorcontrib><creatorcontrib>Naseem, Hameed A.</creatorcontrib><title>Material Characterization of Ge1−xSnx Alloys Grown by a Commercial CVD System for Optoelectronic Device Applications</title><title>Journal of electronic materials</title><addtitle>Journal of Elec Materi</addtitle><description>High-quality compressive-strained Ge 1− x Sn x /Ge films have been deposited on Si(001) substrate using a mainstream commercial chemical vapor deposition reactor. The growth temperature was kept below 450°C to be compatible with Si complementary metal–oxide–semiconductor processes. Germanium tin (Ge 1− x Sn x ) layers were grown with different Sn composition ranging from 0.9% to 7%. Material characterizations, such as secondary-ion mass spectrometry, Rutherford backscattering spectrometry, and x-ray diffraction analysis, show stable Sn incorporation in the Ge lattice. Comparison of the Sn mole fractions obtained using these methods shows that the bowing factor of 0.166 nm (in Vegard’s law) is in close agreement with other experimental data. High-resolution transmission electron microscopy and atomic force microscopy results show that the films have started to relax through the formation of misfit and threading dislocations. Raman spectroscopy, ellipsometry, and photoluminescence (PL) techniques are used to study the structural and optical properties of the films. Room-temperature PL of the films shows that 7% Sn incorporation in the Ge lattice results in a decrease in the direct bandgap of Ge from 0.8 eV to 0.56 eV.</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.)</subject><subject>Chemistry and Materials Science</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Defects and impurities in crystals; microstructure</subject><subject>Electronics and Microelectronics</subject><subject>Exact sciences and technology</subject><subject>Instrumentation</subject><subject>Linear defects: dislocations, disclinations</subject><subject>Materials Science</subject><subject>Methods of crystal growth; physics of crystal growth</subject><subject>Methods of deposition of films and coatings; film growth and epitaxy</subject><subject>Optical and Electronic Materials</subject><subject>Physics</subject><subject>Solid State Physics</subject><subject>Structure of solids and liquids; crystallography</subject><subject>Structure of specific crystalline solids</subject><subject>Theory and models of crystal growth; physics of crystal growth, crystal morphology and orientation</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2014</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkE1OwzAUhC0EEqVwAHbesDT42YnjLKsUClJRF60QO8txHEiVxJEdSsMJWHNETkJ_WD2N3sxo9CF0DfQWKE3uAoAQEaEQEU5lStgJGkEccQJSvJ6iEeUCSMx4fI4uQlhTCjFIGKHNs-6tr3SNs3fttdmLL91XrsWuxDMLv98_22W7xZO6dkPAM-8-W5wPWOPMNY315pB9meLlEHrb4NJ5vOh6Z2treu_ayuCp3VTG4knX1ZU5dIdLdFbqOtir_ztGq4f7VfZI5ovZUzaZky7hjJQR00ameV4wRqEwIhKJttLaghsBeSI4S5ihGkomrYCEFjkzopBpaQpjdcrH6OZY2-lgdF163ZoqqM5XjfaDYjKWlAHsfOzoC7tX-2a9WrsP3-6WKaBqD1gdAasdYLUHrBj_A_kEcRc</recordid><startdate>2014</startdate><enddate>2014</enddate><creator>Mosleh, Aboozar</creator><creator>Ghetmiri, Seyed Amir</creator><creator>Conley, Benjamin R.</creator><creator>Hawkridge, Michael</creator><creator>Benamara, Mourad</creator><creator>Nazzal, Amjad</creator><creator>Tolle, John</creator><creator>Yu, Shui-Qing</creator><creator>Naseem, Hameed A.</creator><general>Springer US</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2014</creationdate><title>Material Characterization of Ge1−xSnx Alloys Grown by a Commercial CVD System for Optoelectronic Device Applications</title><author>Mosleh, Aboozar ; Ghetmiri, Seyed Amir ; Conley, Benjamin R. ; Hawkridge, Michael ; Benamara, Mourad ; Nazzal, Amjad ; Tolle, John ; Yu, Shui-Qing ; Naseem, Hameed A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p732-f42ac89bbd2201dc6467ae8eed3c61b763272c0a1f28e6170db2c6d89fcdcea93</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.)</topic><topic>Chemistry and Materials Science</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Defects and impurities in crystals; microstructure</topic><topic>Electronics and Microelectronics</topic><topic>Exact sciences and technology</topic><topic>Instrumentation</topic><topic>Linear defects: dislocations, disclinations</topic><topic>Materials Science</topic><topic>Methods of crystal growth; physics of crystal growth</topic><topic>Methods of deposition of films and coatings; film growth and epitaxy</topic><topic>Optical and Electronic Materials</topic><topic>Physics</topic><topic>Solid State Physics</topic><topic>Structure of solids and liquids; crystallography</topic><topic>Structure of specific crystalline solids</topic><topic>Theory and models of crystal growth; physics of crystal growth, crystal morphology and orientation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mosleh, Aboozar</creatorcontrib><creatorcontrib>Ghetmiri, Seyed Amir</creatorcontrib><creatorcontrib>Conley, Benjamin R.</creatorcontrib><creatorcontrib>Hawkridge, Michael</creatorcontrib><creatorcontrib>Benamara, Mourad</creatorcontrib><creatorcontrib>Nazzal, Amjad</creatorcontrib><creatorcontrib>Tolle, John</creatorcontrib><creatorcontrib>Yu, Shui-Qing</creatorcontrib><creatorcontrib>Naseem, Hameed A.</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mosleh, Aboozar</au><au>Ghetmiri, Seyed Amir</au><au>Conley, Benjamin R.</au><au>Hawkridge, Michael</au><au>Benamara, Mourad</au><au>Nazzal, Amjad</au><au>Tolle, John</au><au>Yu, Shui-Qing</au><au>Naseem, Hameed A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Material Characterization of Ge1−xSnx Alloys Grown by a Commercial CVD System for Optoelectronic Device Applications</atitle><btitle>Journal of electronic materials</btitle><stitle>Journal of Elec Materi</stitle><date>2014</date><risdate>2014</risdate><volume>43</volume><issue>4</issue><spage>938</spage><epage>946</epage><pages>938-946</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><coden>JECMA5</coden><abstract>High-quality compressive-strained Ge 1− x Sn x /Ge films have been deposited on Si(001) substrate using a mainstream commercial chemical vapor deposition reactor. The growth temperature was kept below 450°C to be compatible with Si complementary metal–oxide–semiconductor processes. Germanium tin (Ge 1− x Sn x ) layers were grown with different Sn composition ranging from 0.9% to 7%. Material characterizations, such as secondary-ion mass spectrometry, Rutherford backscattering spectrometry, and x-ray diffraction analysis, show stable Sn incorporation in the Ge lattice. Comparison of the Sn mole fractions obtained using these methods shows that the bowing factor of 0.166 nm (in Vegard’s law) is in close agreement with other experimental data. High-resolution transmission electron microscopy and atomic force microscopy results show that the films have started to relax through the formation of misfit and threading dislocations. Raman spectroscopy, ellipsometry, and photoluminescence (PL) techniques are used to study the structural and optical properties of the films. Room-temperature PL of the films shows that 7% Sn incorporation in the Ge lattice results in a decrease in the direct bandgap of Ge from 0.8 eV to 0.56 eV.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s11664-014-3089-2</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0361-5235
ispartof Journal of electronic materials, 2014, Vol.43 (4), p.938-946
issn 0361-5235
1543-186X
language eng
recordid cdi_pascalfrancis_primary_28580211
source SpringerNature Journals
subjects Characterization and Evaluation of Materials
Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.)
Chemistry and Materials Science
Condensed matter: structure, mechanical and thermal properties
Cross-disciplinary physics: materials science
rheology
Defects and impurities in crystals
microstructure
Electronics and Microelectronics
Exact sciences and technology
Instrumentation
Linear defects: dislocations, disclinations
Materials Science
Methods of crystal growth
physics of crystal growth
Methods of deposition of films and coatings
film growth and epitaxy
Optical and Electronic Materials
Physics
Solid State Physics
Structure of solids and liquids
crystallography
Structure of specific crystalline solids
Theory and models of crystal growth
physics of crystal growth, crystal morphology and orientation
title Material Characterization of Ge1−xSnx Alloys Grown by a Commercial CVD System for Optoelectronic Device Applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T00%3A10%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Material%20Characterization%20of%20Ge1%E2%88%92xSnx%20Alloys%20Grown%20by%20a%20Commercial%20CVD%20System%20for%20Optoelectronic%20Device%20Applications&rft.btitle=Journal%20of%20electronic%20materials&rft.au=Mosleh,%20Aboozar&rft.date=2014&rft.volume=43&rft.issue=4&rft.spage=938&rft.epage=946&rft.pages=938-946&rft.issn=0361-5235&rft.eissn=1543-186X&rft.coden=JECMA5&rft_id=info:doi/10.1007/s11664-014-3089-2&rft_dat=%3Cpascalfrancis_sprin%3E28580211%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true