Material Characterization of Ge1−xSnx Alloys Grown by a Commercial CVD System for Optoelectronic Device Applications
High-quality compressive-strained Ge 1− x Sn x /Ge films have been deposited on Si(001) substrate using a mainstream commercial chemical vapor deposition reactor. The growth temperature was kept below 450°C to be compatible with Si complementary metal–oxide–semiconductor processes. Germanium tin (Ge...
Gespeichert in:
Hauptverfasser: | , , , , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 946 |
---|---|
container_issue | 4 |
container_start_page | 938 |
container_title | |
container_volume | 43 |
creator | Mosleh, Aboozar Ghetmiri, Seyed Amir Conley, Benjamin R. Hawkridge, Michael Benamara, Mourad Nazzal, Amjad Tolle, John Yu, Shui-Qing Naseem, Hameed A. |
description | High-quality compressive-strained Ge
1−
x
Sn
x
/Ge films have been deposited on Si(001) substrate using a mainstream commercial chemical vapor deposition reactor. The growth temperature was kept below 450°C to be compatible with Si complementary metal–oxide–semiconductor processes. Germanium tin (Ge
1−
x
Sn
x
) layers were grown with different Sn composition ranging from 0.9% to 7%. Material characterizations, such as secondary-ion mass spectrometry, Rutherford backscattering spectrometry, and x-ray diffraction analysis, show stable Sn incorporation in the Ge lattice. Comparison of the Sn mole fractions obtained using these methods shows that the bowing factor of 0.166 nm (in Vegard’s law) is in close agreement with other experimental data. High-resolution transmission electron microscopy and atomic force microscopy results show that the films have started to relax through the formation of misfit and threading dislocations. Raman spectroscopy, ellipsometry, and photoluminescence (PL) techniques are used to study the structural and optical properties of the films. Room-temperature PL of the films shows that 7% Sn incorporation in the Ge lattice results in a decrease in the direct bandgap of Ge from 0.8 eV to 0.56 eV. |
doi_str_mv | 10.1007/s11664-014-3089-2 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_28580211</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>28580211</sourcerecordid><originalsourceid>FETCH-LOGICAL-p732-f42ac89bbd2201dc6467ae8eed3c61b763272c0a1f28e6170db2c6d89fcdcea93</originalsourceid><addsrcrecordid>eNotkE1OwzAUhC0EEqVwAHbesDT42YnjLKsUClJRF60QO8txHEiVxJEdSsMJWHNETkJ_WD2N3sxo9CF0DfQWKE3uAoAQEaEQEU5lStgJGkEccQJSvJ6iEeUCSMx4fI4uQlhTCjFIGKHNs-6tr3SNs3fttdmLL91XrsWuxDMLv98_22W7xZO6dkPAM-8-W5wPWOPMNY315pB9meLlEHrb4NJ5vOh6Z2treu_ayuCp3VTG4knX1ZU5dIdLdFbqOtir_ztGq4f7VfZI5ovZUzaZky7hjJQR00ameV4wRqEwIhKJttLaghsBeSI4S5ihGkomrYCEFjkzopBpaQpjdcrH6OZY2-lgdF163ZoqqM5XjfaDYjKWlAHsfOzoC7tX-2a9WrsP3-6WKaBqD1gdAasdYLUHrBj_A_kEcRc</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Material Characterization of Ge1−xSnx Alloys Grown by a Commercial CVD System for Optoelectronic Device Applications</title><source>SpringerNature Journals</source><creator>Mosleh, Aboozar ; Ghetmiri, Seyed Amir ; Conley, Benjamin R. ; Hawkridge, Michael ; Benamara, Mourad ; Nazzal, Amjad ; Tolle, John ; Yu, Shui-Qing ; Naseem, Hameed A.</creator><creatorcontrib>Mosleh, Aboozar ; Ghetmiri, Seyed Amir ; Conley, Benjamin R. ; Hawkridge, Michael ; Benamara, Mourad ; Nazzal, Amjad ; Tolle, John ; Yu, Shui-Qing ; Naseem, Hameed A.</creatorcontrib><description>High-quality compressive-strained Ge
1−
x
Sn
x
/Ge films have been deposited on Si(001) substrate using a mainstream commercial chemical vapor deposition reactor. The growth temperature was kept below 450°C to be compatible with Si complementary metal–oxide–semiconductor processes. Germanium tin (Ge
1−
x
Sn
x
) layers were grown with different Sn composition ranging from 0.9% to 7%. Material characterizations, such as secondary-ion mass spectrometry, Rutherford backscattering spectrometry, and x-ray diffraction analysis, show stable Sn incorporation in the Ge lattice. Comparison of the Sn mole fractions obtained using these methods shows that the bowing factor of 0.166 nm (in Vegard’s law) is in close agreement with other experimental data. High-resolution transmission electron microscopy and atomic force microscopy results show that the films have started to relax through the formation of misfit and threading dislocations. Raman spectroscopy, ellipsometry, and photoluminescence (PL) techniques are used to study the structural and optical properties of the films. Room-temperature PL of the films shows that 7% Sn incorporation in the Ge lattice results in a decrease in the direct bandgap of Ge from 0.8 eV to 0.56 eV.</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-014-3089-2</identifier><identifier>CODEN: JECMA5</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.) ; Chemistry and Materials Science ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Defects and impurities in crystals; microstructure ; Electronics and Microelectronics ; Exact sciences and technology ; Instrumentation ; Linear defects: dislocations, disclinations ; Materials Science ; Methods of crystal growth; physics of crystal growth ; Methods of deposition of films and coatings; film growth and epitaxy ; Optical and Electronic Materials ; Physics ; Solid State Physics ; Structure of solids and liquids; crystallography ; Structure of specific crystalline solids ; Theory and models of crystal growth; physics of crystal growth, crystal morphology and orientation</subject><ispartof>Journal of electronic materials, 2014, Vol.43 (4), p.938-946</ispartof><rights>TMS 2014</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11664-014-3089-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11664-014-3089-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>310,311,315,781,785,790,791,4051,4052,23935,23936,25145,27929,27930,41493,42562,51324</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28580211$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Mosleh, Aboozar</creatorcontrib><creatorcontrib>Ghetmiri, Seyed Amir</creatorcontrib><creatorcontrib>Conley, Benjamin R.</creatorcontrib><creatorcontrib>Hawkridge, Michael</creatorcontrib><creatorcontrib>Benamara, Mourad</creatorcontrib><creatorcontrib>Nazzal, Amjad</creatorcontrib><creatorcontrib>Tolle, John</creatorcontrib><creatorcontrib>Yu, Shui-Qing</creatorcontrib><creatorcontrib>Naseem, Hameed A.</creatorcontrib><title>Material Characterization of Ge1−xSnx Alloys Grown by a Commercial CVD System for Optoelectronic Device Applications</title><title>Journal of electronic materials</title><addtitle>Journal of Elec Materi</addtitle><description>High-quality compressive-strained Ge
1−
x
Sn
x
/Ge films have been deposited on Si(001) substrate using a mainstream commercial chemical vapor deposition reactor. The growth temperature was kept below 450°C to be compatible with Si complementary metal–oxide–semiconductor processes. Germanium tin (Ge
1−
x
Sn
x
) layers were grown with different Sn composition ranging from 0.9% to 7%. Material characterizations, such as secondary-ion mass spectrometry, Rutherford backscattering spectrometry, and x-ray diffraction analysis, show stable Sn incorporation in the Ge lattice. Comparison of the Sn mole fractions obtained using these methods shows that the bowing factor of 0.166 nm (in Vegard’s law) is in close agreement with other experimental data. High-resolution transmission electron microscopy and atomic force microscopy results show that the films have started to relax through the formation of misfit and threading dislocations. Raman spectroscopy, ellipsometry, and photoluminescence (PL) techniques are used to study the structural and optical properties of the films. Room-temperature PL of the films shows that 7% Sn incorporation in the Ge lattice results in a decrease in the direct bandgap of Ge from 0.8 eV to 0.56 eV.</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.)</subject><subject>Chemistry and Materials Science</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Defects and impurities in crystals; microstructure</subject><subject>Electronics and Microelectronics</subject><subject>Exact sciences and technology</subject><subject>Instrumentation</subject><subject>Linear defects: dislocations, disclinations</subject><subject>Materials Science</subject><subject>Methods of crystal growth; physics of crystal growth</subject><subject>Methods of deposition of films and coatings; film growth and epitaxy</subject><subject>Optical and Electronic Materials</subject><subject>Physics</subject><subject>Solid State Physics</subject><subject>Structure of solids and liquids; crystallography</subject><subject>Structure of specific crystalline solids</subject><subject>Theory and models of crystal growth; physics of crystal growth, crystal morphology and orientation</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2014</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkE1OwzAUhC0EEqVwAHbesDT42YnjLKsUClJRF60QO8txHEiVxJEdSsMJWHNETkJ_WD2N3sxo9CF0DfQWKE3uAoAQEaEQEU5lStgJGkEccQJSvJ6iEeUCSMx4fI4uQlhTCjFIGKHNs-6tr3SNs3fttdmLL91XrsWuxDMLv98_22W7xZO6dkPAM-8-W5wPWOPMNY315pB9meLlEHrb4NJ5vOh6Z2treu_ayuCp3VTG4knX1ZU5dIdLdFbqOtir_ztGq4f7VfZI5ovZUzaZky7hjJQR00ameV4wRqEwIhKJttLaghsBeSI4S5ihGkomrYCEFjkzopBpaQpjdcrH6OZY2-lgdF163ZoqqM5XjfaDYjKWlAHsfOzoC7tX-2a9WrsP3-6WKaBqD1gdAasdYLUHrBj_A_kEcRc</recordid><startdate>2014</startdate><enddate>2014</enddate><creator>Mosleh, Aboozar</creator><creator>Ghetmiri, Seyed Amir</creator><creator>Conley, Benjamin R.</creator><creator>Hawkridge, Michael</creator><creator>Benamara, Mourad</creator><creator>Nazzal, Amjad</creator><creator>Tolle, John</creator><creator>Yu, Shui-Qing</creator><creator>Naseem, Hameed A.</creator><general>Springer US</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2014</creationdate><title>Material Characterization of Ge1−xSnx Alloys Grown by a Commercial CVD System for Optoelectronic Device Applications</title><author>Mosleh, Aboozar ; Ghetmiri, Seyed Amir ; Conley, Benjamin R. ; Hawkridge, Michael ; Benamara, Mourad ; Nazzal, Amjad ; Tolle, John ; Yu, Shui-Qing ; Naseem, Hameed A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p732-f42ac89bbd2201dc6467ae8eed3c61b763272c0a1f28e6170db2c6d89fcdcea93</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.)</topic><topic>Chemistry and Materials Science</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Defects and impurities in crystals; microstructure</topic><topic>Electronics and Microelectronics</topic><topic>Exact sciences and technology</topic><topic>Instrumentation</topic><topic>Linear defects: dislocations, disclinations</topic><topic>Materials Science</topic><topic>Methods of crystal growth; physics of crystal growth</topic><topic>Methods of deposition of films and coatings; film growth and epitaxy</topic><topic>Optical and Electronic Materials</topic><topic>Physics</topic><topic>Solid State Physics</topic><topic>Structure of solids and liquids; crystallography</topic><topic>Structure of specific crystalline solids</topic><topic>Theory and models of crystal growth; physics of crystal growth, crystal morphology and orientation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mosleh, Aboozar</creatorcontrib><creatorcontrib>Ghetmiri, Seyed Amir</creatorcontrib><creatorcontrib>Conley, Benjamin R.</creatorcontrib><creatorcontrib>Hawkridge, Michael</creatorcontrib><creatorcontrib>Benamara, Mourad</creatorcontrib><creatorcontrib>Nazzal, Amjad</creatorcontrib><creatorcontrib>Tolle, John</creatorcontrib><creatorcontrib>Yu, Shui-Qing</creatorcontrib><creatorcontrib>Naseem, Hameed A.</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mosleh, Aboozar</au><au>Ghetmiri, Seyed Amir</au><au>Conley, Benjamin R.</au><au>Hawkridge, Michael</au><au>Benamara, Mourad</au><au>Nazzal, Amjad</au><au>Tolle, John</au><au>Yu, Shui-Qing</au><au>Naseem, Hameed A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Material Characterization of Ge1−xSnx Alloys Grown by a Commercial CVD System for Optoelectronic Device Applications</atitle><btitle>Journal of electronic materials</btitle><stitle>Journal of Elec Materi</stitle><date>2014</date><risdate>2014</risdate><volume>43</volume><issue>4</issue><spage>938</spage><epage>946</epage><pages>938-946</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><coden>JECMA5</coden><abstract>High-quality compressive-strained Ge
1−
x
Sn
x
/Ge films have been deposited on Si(001) substrate using a mainstream commercial chemical vapor deposition reactor. The growth temperature was kept below 450°C to be compatible with Si complementary metal–oxide–semiconductor processes. Germanium tin (Ge
1−
x
Sn
x
) layers were grown with different Sn composition ranging from 0.9% to 7%. Material characterizations, such as secondary-ion mass spectrometry, Rutherford backscattering spectrometry, and x-ray diffraction analysis, show stable Sn incorporation in the Ge lattice. Comparison of the Sn mole fractions obtained using these methods shows that the bowing factor of 0.166 nm (in Vegard’s law) is in close agreement with other experimental data. High-resolution transmission electron microscopy and atomic force microscopy results show that the films have started to relax through the formation of misfit and threading dislocations. Raman spectroscopy, ellipsometry, and photoluminescence (PL) techniques are used to study the structural and optical properties of the films. Room-temperature PL of the films shows that 7% Sn incorporation in the Ge lattice results in a decrease in the direct bandgap of Ge from 0.8 eV to 0.56 eV.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s11664-014-3089-2</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0361-5235 |
ispartof | Journal of electronic materials, 2014, Vol.43 (4), p.938-946 |
issn | 0361-5235 1543-186X |
language | eng |
recordid | cdi_pascalfrancis_primary_28580211 |
source | SpringerNature Journals |
subjects | Characterization and Evaluation of Materials Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.) Chemistry and Materials Science Condensed matter: structure, mechanical and thermal properties Cross-disciplinary physics: materials science rheology Defects and impurities in crystals microstructure Electronics and Microelectronics Exact sciences and technology Instrumentation Linear defects: dislocations, disclinations Materials Science Methods of crystal growth physics of crystal growth Methods of deposition of films and coatings film growth and epitaxy Optical and Electronic Materials Physics Solid State Physics Structure of solids and liquids crystallography Structure of specific crystalline solids Theory and models of crystal growth physics of crystal growth, crystal morphology and orientation |
title | Material Characterization of Ge1−xSnx Alloys Grown by a Commercial CVD System for Optoelectronic Device Applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T00%3A10%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Material%20Characterization%20of%20Ge1%E2%88%92xSnx%20Alloys%20Grown%20by%20a%20Commercial%20CVD%20System%20for%20Optoelectronic%20Device%20Applications&rft.btitle=Journal%20of%20electronic%20materials&rft.au=Mosleh,%20Aboozar&rft.date=2014&rft.volume=43&rft.issue=4&rft.spage=938&rft.epage=946&rft.pages=938-946&rft.issn=0361-5235&rft.eissn=1543-186X&rft.coden=JECMA5&rft_id=info:doi/10.1007/s11664-014-3089-2&rft_dat=%3Cpascalfrancis_sprin%3E28580211%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |