Data Clustering Using a Model Granular Magnet

We present a new approach to clustering, based on the physical properties of an inhomogeneous ferromagnet. No assumption is made regarding the underlying distribution of the data. We assign a Potts spin to each data point and introduce an interaction between neighboring points, whose strength is a d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural computation 1997-11, Vol.9 (8), p.1805-1842
Hauptverfasser: Blatt, Marcelo, Wiseman, Shai, Domany, Eytan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1842
container_issue 8
container_start_page 1805
container_title Neural computation
container_volume 9
creator Blatt, Marcelo
Wiseman, Shai
Domany, Eytan
description We present a new approach to clustering, based on the physical properties of an inhomogeneous ferromagnet. No assumption is made regarding the underlying distribution of the data. We assign a Potts spin to each data point and introduce an interaction between neighboring points, whose strength is a decreasing function of the distance between the neighbors. This magnetic system exhibits three phases. At very low temperatures, it is completely ordered; all spins are aligned. At very high temperatures, the system does not exhibit any ordering, and in an intermediate regime, clusters of relatively strongly coupled spins become ordered, whereas different clusters remain uncorrelated. This intermediate phase is identified by a jump in the order parameters. The spin-spin correlation function is used to partition the spins and the corresponding data points into clusters. We demonstrate on three synthetic and three real data sets how the method works. Detailed comparison to the performance of other techniques clearly indicates the relative success of our method.
doi_str_mv 10.1162/neco.1997.9.8.1805
format Article
fullrecord <record><control><sourceid>mit_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_2855206</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>neco.1997.9.8.1805.pdf</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-92ff2641fb02dec94a62793aa1b263ecf9c2e5b2227036dfb43fc94a607ed9203</originalsourceid><addsrcrecordid>eNp9j7tOwzAUhi0EEqXwAkwZWBOOjxNfRlRKQWrFQiU2y3HsKlWaVHaKBE9P0iImxHLO8t8-Qm4pZJRyvG-d7TKqlMhUJjMqoTgjE1owSKWU7-dkAlKpVHAuLslVjFsA4BSKCUkfTW-SWXOIvQt1u0nWcbwmWXWVa5JFMO2hMSFZmU3r-mty4U0T3c3Pn5L10_xt9pwuXxcvs4dlapko-lSh98hz6kvAylmVG45CMWNoiZw565VFV5SIKIDxypc580cVCFcpBDYleMq1oYsxOK_3od6Z8Kkp6BFYj8B6BNZKSz0CD6a7k2lvojWNH6bbOv46URYFAh9k85NsV_d62x1CO5Ac8z5ULTUDZCzXCEiHJg1Sf9X7v-uyP3L-2fcNUZJ6mg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Data Clustering Using a Model Granular Magnet</title><source>MIT Press Journals</source><creator>Blatt, Marcelo ; Wiseman, Shai ; Domany, Eytan</creator><creatorcontrib>Blatt, Marcelo ; Wiseman, Shai ; Domany, Eytan</creatorcontrib><description>We present a new approach to clustering, based on the physical properties of an inhomogeneous ferromagnet. No assumption is made regarding the underlying distribution of the data. We assign a Potts spin to each data point and introduce an interaction between neighboring points, whose strength is a decreasing function of the distance between the neighbors. This magnetic system exhibits three phases. At very low temperatures, it is completely ordered; all spins are aligned. At very high temperatures, the system does not exhibit any ordering, and in an intermediate regime, clusters of relatively strongly coupled spins become ordered, whereas different clusters remain uncorrelated. This intermediate phase is identified by a jump in the order parameters. The spin-spin correlation function is used to partition the spins and the corresponding data points into clusters. We demonstrate on three synthetic and three real data sets how the method works. Detailed comparison to the performance of other techniques clearly indicates the relative success of our method.</description><identifier>ISSN: 0899-7667</identifier><identifier>EISSN: 1530-888X</identifier><identifier>DOI: 10.1162/neco.1997.9.8.1805</identifier><language>eng</language><publisher>One Rogers Street, Cambridge, MA 02142-1209, USA: MIT Press</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Connectionism. Neural networks ; Exact sciences and technology ; Theoretical computing</subject><ispartof>Neural computation, 1997-11, Vol.9 (8), p.1805-1842</ispartof><rights>1997 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-92ff2641fb02dec94a62793aa1b263ecf9c2e5b2227036dfb43fc94a607ed9203</citedby><cites>FETCH-LOGICAL-c375t-92ff2641fb02dec94a62793aa1b263ecf9c2e5b2227036dfb43fc94a607ed9203</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://direct.mit.edu/neco/article/doi/10.1162/neco.1997.9.8.1805$$EHTML$$P50$$Gmit$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54009,54010</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2855206$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Blatt, Marcelo</creatorcontrib><creatorcontrib>Wiseman, Shai</creatorcontrib><creatorcontrib>Domany, Eytan</creatorcontrib><title>Data Clustering Using a Model Granular Magnet</title><title>Neural computation</title><description>We present a new approach to clustering, based on the physical properties of an inhomogeneous ferromagnet. No assumption is made regarding the underlying distribution of the data. We assign a Potts spin to each data point and introduce an interaction between neighboring points, whose strength is a decreasing function of the distance between the neighbors. This magnetic system exhibits three phases. At very low temperatures, it is completely ordered; all spins are aligned. At very high temperatures, the system does not exhibit any ordering, and in an intermediate regime, clusters of relatively strongly coupled spins become ordered, whereas different clusters remain uncorrelated. This intermediate phase is identified by a jump in the order parameters. The spin-spin correlation function is used to partition the spins and the corresponding data points into clusters. We demonstrate on three synthetic and three real data sets how the method works. Detailed comparison to the performance of other techniques clearly indicates the relative success of our method.</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Connectionism. Neural networks</subject><subject>Exact sciences and technology</subject><subject>Theoretical computing</subject><issn>0899-7667</issn><issn>1530-888X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNp9j7tOwzAUhi0EEqXwAkwZWBOOjxNfRlRKQWrFQiU2y3HsKlWaVHaKBE9P0iImxHLO8t8-Qm4pZJRyvG-d7TKqlMhUJjMqoTgjE1owSKWU7-dkAlKpVHAuLslVjFsA4BSKCUkfTW-SWXOIvQt1u0nWcbwmWXWVa5JFMO2hMSFZmU3r-mty4U0T3c3Pn5L10_xt9pwuXxcvs4dlapko-lSh98hz6kvAylmVG45CMWNoiZw565VFV5SIKIDxypc580cVCFcpBDYleMq1oYsxOK_3od6Z8Kkp6BFYj8B6BNZKSz0CD6a7k2lvojWNH6bbOv46URYFAh9k85NsV_d62x1CO5Ac8z5ULTUDZCzXCEiHJg1Sf9X7v-uyP3L-2fcNUZJ6mg</recordid><startdate>19971115</startdate><enddate>19971115</enddate><creator>Blatt, Marcelo</creator><creator>Wiseman, Shai</creator><creator>Domany, Eytan</creator><general>MIT Press</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19971115</creationdate><title>Data Clustering Using a Model Granular Magnet</title><author>Blatt, Marcelo ; Wiseman, Shai ; Domany, Eytan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-92ff2641fb02dec94a62793aa1b263ecf9c2e5b2227036dfb43fc94a607ed9203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Connectionism. Neural networks</topic><topic>Exact sciences and technology</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Blatt, Marcelo</creatorcontrib><creatorcontrib>Wiseman, Shai</creatorcontrib><creatorcontrib>Domany, Eytan</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Neural computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Blatt, Marcelo</au><au>Wiseman, Shai</au><au>Domany, Eytan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data Clustering Using a Model Granular Magnet</atitle><jtitle>Neural computation</jtitle><date>1997-11-15</date><risdate>1997</risdate><volume>9</volume><issue>8</issue><spage>1805</spage><epage>1842</epage><pages>1805-1842</pages><issn>0899-7667</issn><eissn>1530-888X</eissn><abstract>We present a new approach to clustering, based on the physical properties of an inhomogeneous ferromagnet. No assumption is made regarding the underlying distribution of the data. We assign a Potts spin to each data point and introduce an interaction between neighboring points, whose strength is a decreasing function of the distance between the neighbors. This magnetic system exhibits three phases. At very low temperatures, it is completely ordered; all spins are aligned. At very high temperatures, the system does not exhibit any ordering, and in an intermediate regime, clusters of relatively strongly coupled spins become ordered, whereas different clusters remain uncorrelated. This intermediate phase is identified by a jump in the order parameters. The spin-spin correlation function is used to partition the spins and the corresponding data points into clusters. We demonstrate on three synthetic and three real data sets how the method works. Detailed comparison to the performance of other techniques clearly indicates the relative success of our method.</abstract><cop>One Rogers Street, Cambridge, MA 02142-1209, USA</cop><pub>MIT Press</pub><doi>10.1162/neco.1997.9.8.1805</doi><tpages>38</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0899-7667
ispartof Neural computation, 1997-11, Vol.9 (8), p.1805-1842
issn 0899-7667
1530-888X
language eng
recordid cdi_pascalfrancis_primary_2855206
source MIT Press Journals
subjects Algorithmics. Computability. Computer arithmetics
Applied sciences
Artificial intelligence
Computer science
control theory
systems
Connectionism. Neural networks
Exact sciences and technology
Theoretical computing
title Data Clustering Using a Model Granular Magnet
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T09%3A02%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-mit_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data%20Clustering%20Using%20a%20Model%20Granular%20Magnet&rft.jtitle=Neural%20computation&rft.au=Blatt,%20Marcelo&rft.date=1997-11-15&rft.volume=9&rft.issue=8&rft.spage=1805&rft.epage=1842&rft.pages=1805-1842&rft.issn=0899-7667&rft.eissn=1530-888X&rft_id=info:doi/10.1162/neco.1997.9.8.1805&rft_dat=%3Cmit_pasca%3Eneco.1997.9.8.1805.pdf%3C/mit_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true