Data Clustering Using a Model Granular Magnet
We present a new approach to clustering, based on the physical properties of an inhomogeneous ferromagnet. No assumption is made regarding the underlying distribution of the data. We assign a Potts spin to each data point and introduce an interaction between neighboring points, whose strength is a d...
Gespeichert in:
Veröffentlicht in: | Neural computation 1997-11, Vol.9 (8), p.1805-1842 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1842 |
---|---|
container_issue | 8 |
container_start_page | 1805 |
container_title | Neural computation |
container_volume | 9 |
creator | Blatt, Marcelo Wiseman, Shai Domany, Eytan |
description | We present a new approach to clustering, based on the physical properties of an inhomogeneous ferromagnet. No assumption is made regarding the underlying distribution of the data. We assign a Potts spin to each data point and introduce an interaction between neighboring points, whose strength is a decreasing function of the distance between the neighbors. This magnetic system exhibits three phases. At very low temperatures, it is completely ordered; all spins are aligned. At very high temperatures, the system does not exhibit any ordering, and in an intermediate regime, clusters of relatively strongly coupled spins become ordered, whereas different clusters remain uncorrelated. This intermediate phase is identified by a jump in the order parameters. The spin-spin correlation function is used to partition the spins and the corresponding data points into clusters. We demonstrate on three synthetic and three real data sets how the method works. Detailed comparison to the performance of other techniques clearly indicates the relative success of our method. |
doi_str_mv | 10.1162/neco.1997.9.8.1805 |
format | Article |
fullrecord | <record><control><sourceid>mit_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_2855206</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>neco.1997.9.8.1805.pdf</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-92ff2641fb02dec94a62793aa1b263ecf9c2e5b2227036dfb43fc94a607ed9203</originalsourceid><addsrcrecordid>eNp9j7tOwzAUhi0EEqXwAkwZWBOOjxNfRlRKQWrFQiU2y3HsKlWaVHaKBE9P0iImxHLO8t8-Qm4pZJRyvG-d7TKqlMhUJjMqoTgjE1owSKWU7-dkAlKpVHAuLslVjFsA4BSKCUkfTW-SWXOIvQt1u0nWcbwmWXWVa5JFMO2hMSFZmU3r-mty4U0T3c3Pn5L10_xt9pwuXxcvs4dlapko-lSh98hz6kvAylmVG45CMWNoiZw565VFV5SIKIDxypc580cVCFcpBDYleMq1oYsxOK_3od6Z8Kkp6BFYj8B6BNZKSz0CD6a7k2lvojWNH6bbOv46URYFAh9k85NsV_d62x1CO5Ac8z5ULTUDZCzXCEiHJg1Sf9X7v-uyP3L-2fcNUZJ6mg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Data Clustering Using a Model Granular Magnet</title><source>MIT Press Journals</source><creator>Blatt, Marcelo ; Wiseman, Shai ; Domany, Eytan</creator><creatorcontrib>Blatt, Marcelo ; Wiseman, Shai ; Domany, Eytan</creatorcontrib><description>We present a new approach to clustering, based on the physical properties of an inhomogeneous ferromagnet. No assumption is made regarding the underlying distribution of the data. We assign a Potts spin to each data point and introduce an interaction between neighboring points, whose strength is a decreasing function of the distance between the neighbors. This magnetic system exhibits three phases. At very low temperatures, it is completely ordered; all spins are aligned. At very high temperatures, the system does not exhibit any ordering, and in an intermediate regime, clusters of relatively strongly coupled spins become ordered, whereas different clusters remain uncorrelated. This intermediate phase is identified by a jump in the order parameters. The spin-spin correlation function is used to partition the spins and the corresponding data points into clusters. We demonstrate on three synthetic and three real data sets how the method works. Detailed comparison to the performance of other techniques clearly indicates the relative success of our method.</description><identifier>ISSN: 0899-7667</identifier><identifier>EISSN: 1530-888X</identifier><identifier>DOI: 10.1162/neco.1997.9.8.1805</identifier><language>eng</language><publisher>One Rogers Street, Cambridge, MA 02142-1209, USA: MIT Press</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Connectionism. Neural networks ; Exact sciences and technology ; Theoretical computing</subject><ispartof>Neural computation, 1997-11, Vol.9 (8), p.1805-1842</ispartof><rights>1997 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-92ff2641fb02dec94a62793aa1b263ecf9c2e5b2227036dfb43fc94a607ed9203</citedby><cites>FETCH-LOGICAL-c375t-92ff2641fb02dec94a62793aa1b263ecf9c2e5b2227036dfb43fc94a607ed9203</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://direct.mit.edu/neco/article/doi/10.1162/neco.1997.9.8.1805$$EHTML$$P50$$Gmit$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54009,54010</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2855206$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Blatt, Marcelo</creatorcontrib><creatorcontrib>Wiseman, Shai</creatorcontrib><creatorcontrib>Domany, Eytan</creatorcontrib><title>Data Clustering Using a Model Granular Magnet</title><title>Neural computation</title><description>We present a new approach to clustering, based on the physical properties of an inhomogeneous ferromagnet. No assumption is made regarding the underlying distribution of the data. We assign a Potts spin to each data point and introduce an interaction between neighboring points, whose strength is a decreasing function of the distance between the neighbors. This magnetic system exhibits three phases. At very low temperatures, it is completely ordered; all spins are aligned. At very high temperatures, the system does not exhibit any ordering, and in an intermediate regime, clusters of relatively strongly coupled spins become ordered, whereas different clusters remain uncorrelated. This intermediate phase is identified by a jump in the order parameters. The spin-spin correlation function is used to partition the spins and the corresponding data points into clusters. We demonstrate on three synthetic and three real data sets how the method works. Detailed comparison to the performance of other techniques clearly indicates the relative success of our method.</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Connectionism. Neural networks</subject><subject>Exact sciences and technology</subject><subject>Theoretical computing</subject><issn>0899-7667</issn><issn>1530-888X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNp9j7tOwzAUhi0EEqXwAkwZWBOOjxNfRlRKQWrFQiU2y3HsKlWaVHaKBE9P0iImxHLO8t8-Qm4pZJRyvG-d7TKqlMhUJjMqoTgjE1owSKWU7-dkAlKpVHAuLslVjFsA4BSKCUkfTW-SWXOIvQt1u0nWcbwmWXWVa5JFMO2hMSFZmU3r-mty4U0T3c3Pn5L10_xt9pwuXxcvs4dlapko-lSh98hz6kvAylmVG45CMWNoiZw565VFV5SIKIDxypc580cVCFcpBDYleMq1oYsxOK_3od6Z8Kkp6BFYj8B6BNZKSz0CD6a7k2lvojWNH6bbOv46URYFAh9k85NsV_d62x1CO5Ac8z5ULTUDZCzXCEiHJg1Sf9X7v-uyP3L-2fcNUZJ6mg</recordid><startdate>19971115</startdate><enddate>19971115</enddate><creator>Blatt, Marcelo</creator><creator>Wiseman, Shai</creator><creator>Domany, Eytan</creator><general>MIT Press</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19971115</creationdate><title>Data Clustering Using a Model Granular Magnet</title><author>Blatt, Marcelo ; Wiseman, Shai ; Domany, Eytan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-92ff2641fb02dec94a62793aa1b263ecf9c2e5b2227036dfb43fc94a607ed9203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Connectionism. Neural networks</topic><topic>Exact sciences and technology</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Blatt, Marcelo</creatorcontrib><creatorcontrib>Wiseman, Shai</creatorcontrib><creatorcontrib>Domany, Eytan</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Neural computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Blatt, Marcelo</au><au>Wiseman, Shai</au><au>Domany, Eytan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data Clustering Using a Model Granular Magnet</atitle><jtitle>Neural computation</jtitle><date>1997-11-15</date><risdate>1997</risdate><volume>9</volume><issue>8</issue><spage>1805</spage><epage>1842</epage><pages>1805-1842</pages><issn>0899-7667</issn><eissn>1530-888X</eissn><abstract>We present a new approach to clustering, based on the physical properties of an inhomogeneous ferromagnet. No assumption is made regarding the underlying distribution of the data. We assign a Potts spin to each data point and introduce an interaction between neighboring points, whose strength is a decreasing function of the distance between the neighbors. This magnetic system exhibits three phases. At very low temperatures, it is completely ordered; all spins are aligned. At very high temperatures, the system does not exhibit any ordering, and in an intermediate regime, clusters of relatively strongly coupled spins become ordered, whereas different clusters remain uncorrelated. This intermediate phase is identified by a jump in the order parameters. The spin-spin correlation function is used to partition the spins and the corresponding data points into clusters. We demonstrate on three synthetic and three real data sets how the method works. Detailed comparison to the performance of other techniques clearly indicates the relative success of our method.</abstract><cop>One Rogers Street, Cambridge, MA 02142-1209, USA</cop><pub>MIT Press</pub><doi>10.1162/neco.1997.9.8.1805</doi><tpages>38</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0899-7667 |
ispartof | Neural computation, 1997-11, Vol.9 (8), p.1805-1842 |
issn | 0899-7667 1530-888X |
language | eng |
recordid | cdi_pascalfrancis_primary_2855206 |
source | MIT Press Journals |
subjects | Algorithmics. Computability. Computer arithmetics Applied sciences Artificial intelligence Computer science control theory systems Connectionism. Neural networks Exact sciences and technology Theoretical computing |
title | Data Clustering Using a Model Granular Magnet |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T09%3A02%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-mit_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data%20Clustering%20Using%20a%20Model%20Granular%20Magnet&rft.jtitle=Neural%20computation&rft.au=Blatt,%20Marcelo&rft.date=1997-11-15&rft.volume=9&rft.issue=8&rft.spage=1805&rft.epage=1842&rft.pages=1805-1842&rft.issn=0899-7667&rft.eissn=1530-888X&rft_id=info:doi/10.1162/neco.1997.9.8.1805&rft_dat=%3Cmit_pasca%3Eneco.1997.9.8.1805.pdf%3C/mit_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |