Reactivity at the Ln2NiO4+δ/electrolyte interface (Ln = La, Nd) studied by Electrochemical Impedance Spectroscopy and Transmission Electron Microscopy
Chemical reactivity between Ln2NiO4+δ (Ln: La, Nd) electrodes and Y0.08Zr0.92O1.96 (YSZ) and Ce0.9Gd0.1O1.95 (CGO) electrolytes was analyzed by Electrochemical Impedance Spectroscopy (EIS) and Focused Ion Beam-Transmission Electron Microscopy (FIB-TEM) techniques. Ln2NiO4+δ electrodes were deposited...
Gespeichert in:
Veröffentlicht in: | Journal of power sources 2014-11, Vol.265, p.6-13 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13 |
---|---|
container_issue | |
container_start_page | 6 |
container_title | Journal of power sources |
container_volume | 265 |
creator | Montenegro-Hernández, Alejandra Soldati, Analía Mogni, Liliana Troiani, Horacio Schreiber, Anja Soldera, Flavio Caneiro, Alberto |
description | Chemical reactivity between Ln2NiO4+δ (Ln: La, Nd) electrodes and Y0.08Zr0.92O1.96 (YSZ) and Ce0.9Gd0.1O1.95 (CGO) electrolytes was analyzed by Electrochemical Impedance Spectroscopy (EIS) and Focused Ion Beam-Transmission Electron Microscopy (FIB-TEM) techniques. Ln2NiO4+δ electrodes were deposited onto CGO and YSZ electrolytes by aerography and treated at 900 °C during 1 h in order to promote electrode adhesion. EIS spectra were collected between 500 and 800 °C in dry air. The Polarization Resistances (PR) values for La2NiO4/CGO/La2NiO4 cell are higher than those of La2NiO4/YSZ/La2NiO4. The PR for both cells and its evolution in time suggest that chemical reactivity is developed at 900 °C during the adhesion treatment and at T higher than 650 °C during the EIS measurements. The PR for Nd2NiO4/CGO/Nd2NiO4 and Nd2NiO4/YSZ/Nd2NiO4 are much lower than those of La2NiO4/CGO/La2NiO4 and La2NiO4/YSZ/La2NiO4 cells. These values and the slight increase of PR with time for Nd2NiO4 (NNO) electrodes indicate that the strength of chemical reactivity is much lower than that of La2NiO4 (LNO).
TEM results confirmed that reactivity between CGO and LNO is much higher than that of YSZ and LNO and also confirm that the strength of reactivity is appreciably lower for NNO as electrode material.
•FIB-TEM study on chemical reactivity between LNO/CGO, LNO/YSZ, NNO/CGO, NNO/YSZ.•FIB-TEM shows the beginning of the reactivity process.•EIS suggests reactivity at T > 600 °C while by XRD is observed at T > 800 °C.•LNO–CGO reactivity strength was higher than that of LNO–YSZ.•The strength of NNO reactivity with YSZ and CGO was lower than that of LNO. |
doi_str_mv | 10.1016/j.jpowsour.2014.04.082 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_28513428</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378775314005837</els_id><sourcerecordid>S0378775314005837</sourcerecordid><originalsourceid>FETCH-LOGICAL-e242t-aa985915d9e15af0fd7ea477d7e9e8037669c53b16e0185aabb8be4a9b62c963</originalsourceid><addsrcrecordid>eNo1UVFqGzEUFKWBukmuUPRTaEnWkbSrlfaj0GCSNrCxIfW_eCu9JTL27rKSU3yU_OUQOUEOkDNVrhN4MB9v5r0ZhpAvnE054-XFaroa-r-h345TwXgxZWm0-EAmXKs8E0rKj2TCcqUzpWT-iXwOYcUY41yxCXm8Q7DRP_i4oxBpvEdad2LuF8XZ6_MFrtHGsV_vIlLfRRxbsEi_1d3L04-XpxrO6dx9pyFunUdHmx29OgjsPW68hTW92QzooEuiP8P_TbD9kD51ji5H6MLGh-D77l3X0Vtv30gn5KiFdcDTNzwmy-ur5ex3Vi9-3cwu6wxFIWIGUGlZcekq5BJa1jqFUCiVoEKdYpdlZWXe8BIZ1xKgaXSDBVRNKWxV5sfk6-HsACE5bpMr64MZRr-BcWeEljwvhE68nwceJi8PHkcTrMeUzPkxeTeu94Yzs2_ErMx7I2bfiGFptMj_AUiCh_4</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Reactivity at the Ln2NiO4+δ/electrolyte interface (Ln = La, Nd) studied by Electrochemical Impedance Spectroscopy and Transmission Electron Microscopy</title><source>Access via ScienceDirect (Elsevier)</source><creator>Montenegro-Hernández, Alejandra ; Soldati, Analía ; Mogni, Liliana ; Troiani, Horacio ; Schreiber, Anja ; Soldera, Flavio ; Caneiro, Alberto</creator><creatorcontrib>Montenegro-Hernández, Alejandra ; Soldati, Analía ; Mogni, Liliana ; Troiani, Horacio ; Schreiber, Anja ; Soldera, Flavio ; Caneiro, Alberto</creatorcontrib><description>Chemical reactivity between Ln2NiO4+δ (Ln: La, Nd) electrodes and Y0.08Zr0.92O1.96 (YSZ) and Ce0.9Gd0.1O1.95 (CGO) electrolytes was analyzed by Electrochemical Impedance Spectroscopy (EIS) and Focused Ion Beam-Transmission Electron Microscopy (FIB-TEM) techniques. Ln2NiO4+δ electrodes were deposited onto CGO and YSZ electrolytes by aerography and treated at 900 °C during 1 h in order to promote electrode adhesion. EIS spectra were collected between 500 and 800 °C in dry air. The Polarization Resistances (PR) values for La2NiO4/CGO/La2NiO4 cell are higher than those of La2NiO4/YSZ/La2NiO4. The PR for both cells and its evolution in time suggest that chemical reactivity is developed at 900 °C during the adhesion treatment and at T higher than 650 °C during the EIS measurements. The PR for Nd2NiO4/CGO/Nd2NiO4 and Nd2NiO4/YSZ/Nd2NiO4 are much lower than those of La2NiO4/CGO/La2NiO4 and La2NiO4/YSZ/La2NiO4 cells. These values and the slight increase of PR with time for Nd2NiO4 (NNO) electrodes indicate that the strength of chemical reactivity is much lower than that of La2NiO4 (LNO).
TEM results confirmed that reactivity between CGO and LNO is much higher than that of YSZ and LNO and also confirm that the strength of reactivity is appreciably lower for NNO as electrode material.
•FIB-TEM study on chemical reactivity between LNO/CGO, LNO/YSZ, NNO/CGO, NNO/YSZ.•FIB-TEM shows the beginning of the reactivity process.•EIS suggests reactivity at T > 600 °C while by XRD is observed at T > 800 °C.•LNO–CGO reactivity strength was higher than that of LNO–YSZ.•The strength of NNO reactivity with YSZ and CGO was lower than that of LNO.</description><identifier>ISSN: 0378-7753</identifier><identifier>EISSN: 1873-2755</identifier><identifier>DOI: 10.1016/j.jpowsour.2014.04.082</identifier><identifier>CODEN: JPSODZ</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Chemical reactivity ; Direct energy conversion and energy accumulation ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Electrochemical conversion: primary and secondary batteries, fuel cells ; Electrochemical Impedance Spectroscopy ; Energy ; Energy. Thermal use of fuels ; Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc ; Exact sciences and technology ; Fuel cells ; Interface ; Intermediate temperature-solid oxide fuel cell ; Ln2NiO4+δ ; Transmission Electron Microscopy-Focused Ion Beam</subject><ispartof>Journal of power sources, 2014-11, Vol.265, p.6-13</ispartof><rights>2014 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-0816-278X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jpowsour.2014.04.082$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28513428$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Montenegro-Hernández, Alejandra</creatorcontrib><creatorcontrib>Soldati, Analía</creatorcontrib><creatorcontrib>Mogni, Liliana</creatorcontrib><creatorcontrib>Troiani, Horacio</creatorcontrib><creatorcontrib>Schreiber, Anja</creatorcontrib><creatorcontrib>Soldera, Flavio</creatorcontrib><creatorcontrib>Caneiro, Alberto</creatorcontrib><title>Reactivity at the Ln2NiO4+δ/electrolyte interface (Ln = La, Nd) studied by Electrochemical Impedance Spectroscopy and Transmission Electron Microscopy</title><title>Journal of power sources</title><description>Chemical reactivity between Ln2NiO4+δ (Ln: La, Nd) electrodes and Y0.08Zr0.92O1.96 (YSZ) and Ce0.9Gd0.1O1.95 (CGO) electrolytes was analyzed by Electrochemical Impedance Spectroscopy (EIS) and Focused Ion Beam-Transmission Electron Microscopy (FIB-TEM) techniques. Ln2NiO4+δ electrodes were deposited onto CGO and YSZ electrolytes by aerography and treated at 900 °C during 1 h in order to promote electrode adhesion. EIS spectra were collected between 500 and 800 °C in dry air. The Polarization Resistances (PR) values for La2NiO4/CGO/La2NiO4 cell are higher than those of La2NiO4/YSZ/La2NiO4. The PR for both cells and its evolution in time suggest that chemical reactivity is developed at 900 °C during the adhesion treatment and at T higher than 650 °C during the EIS measurements. The PR for Nd2NiO4/CGO/Nd2NiO4 and Nd2NiO4/YSZ/Nd2NiO4 are much lower than those of La2NiO4/CGO/La2NiO4 and La2NiO4/YSZ/La2NiO4 cells. These values and the slight increase of PR with time for Nd2NiO4 (NNO) electrodes indicate that the strength of chemical reactivity is much lower than that of La2NiO4 (LNO).
TEM results confirmed that reactivity between CGO and LNO is much higher than that of YSZ and LNO and also confirm that the strength of reactivity is appreciably lower for NNO as electrode material.
•FIB-TEM study on chemical reactivity between LNO/CGO, LNO/YSZ, NNO/CGO, NNO/YSZ.•FIB-TEM shows the beginning of the reactivity process.•EIS suggests reactivity at T > 600 °C while by XRD is observed at T > 800 °C.•LNO–CGO reactivity strength was higher than that of LNO–YSZ.•The strength of NNO reactivity with YSZ and CGO was lower than that of LNO.</description><subject>Applied sciences</subject><subject>Chemical reactivity</subject><subject>Direct energy conversion and energy accumulation</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Electrochemical conversion: primary and secondary batteries, fuel cells</subject><subject>Electrochemical Impedance Spectroscopy</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</subject><subject>Exact sciences and technology</subject><subject>Fuel cells</subject><subject>Interface</subject><subject>Intermediate temperature-solid oxide fuel cell</subject><subject>Ln2NiO4+δ</subject><subject>Transmission Electron Microscopy-Focused Ion Beam</subject><issn>0378-7753</issn><issn>1873-2755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNo1UVFqGzEUFKWBukmuUPRTaEnWkbSrlfaj0GCSNrCxIfW_eCu9JTL27rKSU3yU_OUQOUEOkDNVrhN4MB9v5r0ZhpAvnE054-XFaroa-r-h345TwXgxZWm0-EAmXKs8E0rKj2TCcqUzpWT-iXwOYcUY41yxCXm8Q7DRP_i4oxBpvEdad2LuF8XZ6_MFrtHGsV_vIlLfRRxbsEi_1d3L04-XpxrO6dx9pyFunUdHmx29OgjsPW68hTW92QzooEuiP8P_TbD9kD51ji5H6MLGh-D77l3X0Vtv30gn5KiFdcDTNzwmy-ur5ex3Vi9-3cwu6wxFIWIGUGlZcekq5BJa1jqFUCiVoEKdYpdlZWXe8BIZ1xKgaXSDBVRNKWxV5sfk6-HsACE5bpMr64MZRr-BcWeEljwvhE68nwceJi8PHkcTrMeUzPkxeTeu94Yzs2_ErMx7I2bfiGFptMj_AUiCh_4</recordid><startdate>20141101</startdate><enddate>20141101</enddate><creator>Montenegro-Hernández, Alejandra</creator><creator>Soldati, Analía</creator><creator>Mogni, Liliana</creator><creator>Troiani, Horacio</creator><creator>Schreiber, Anja</creator><creator>Soldera, Flavio</creator><creator>Caneiro, Alberto</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><orcidid>https://orcid.org/0000-0002-0816-278X</orcidid></search><sort><creationdate>20141101</creationdate><title>Reactivity at the Ln2NiO4+δ/electrolyte interface (Ln = La, Nd) studied by Electrochemical Impedance Spectroscopy and Transmission Electron Microscopy</title><author>Montenegro-Hernández, Alejandra ; Soldati, Analía ; Mogni, Liliana ; Troiani, Horacio ; Schreiber, Anja ; Soldera, Flavio ; Caneiro, Alberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-e242t-aa985915d9e15af0fd7ea477d7e9e8037669c53b16e0185aabb8be4a9b62c963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied sciences</topic><topic>Chemical reactivity</topic><topic>Direct energy conversion and energy accumulation</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Electrochemical conversion: primary and secondary batteries, fuel cells</topic><topic>Electrochemical Impedance Spectroscopy</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</topic><topic>Exact sciences and technology</topic><topic>Fuel cells</topic><topic>Interface</topic><topic>Intermediate temperature-solid oxide fuel cell</topic><topic>Ln2NiO4+δ</topic><topic>Transmission Electron Microscopy-Focused Ion Beam</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Montenegro-Hernández, Alejandra</creatorcontrib><creatorcontrib>Soldati, Analía</creatorcontrib><creatorcontrib>Mogni, Liliana</creatorcontrib><creatorcontrib>Troiani, Horacio</creatorcontrib><creatorcontrib>Schreiber, Anja</creatorcontrib><creatorcontrib>Soldera, Flavio</creatorcontrib><creatorcontrib>Caneiro, Alberto</creatorcontrib><collection>Pascal-Francis</collection><jtitle>Journal of power sources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Montenegro-Hernández, Alejandra</au><au>Soldati, Analía</au><au>Mogni, Liliana</au><au>Troiani, Horacio</au><au>Schreiber, Anja</au><au>Soldera, Flavio</au><au>Caneiro, Alberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reactivity at the Ln2NiO4+δ/electrolyte interface (Ln = La, Nd) studied by Electrochemical Impedance Spectroscopy and Transmission Electron Microscopy</atitle><jtitle>Journal of power sources</jtitle><date>2014-11-01</date><risdate>2014</risdate><volume>265</volume><spage>6</spage><epage>13</epage><pages>6-13</pages><issn>0378-7753</issn><eissn>1873-2755</eissn><coden>JPSODZ</coden><abstract>Chemical reactivity between Ln2NiO4+δ (Ln: La, Nd) electrodes and Y0.08Zr0.92O1.96 (YSZ) and Ce0.9Gd0.1O1.95 (CGO) electrolytes was analyzed by Electrochemical Impedance Spectroscopy (EIS) and Focused Ion Beam-Transmission Electron Microscopy (FIB-TEM) techniques. Ln2NiO4+δ electrodes were deposited onto CGO and YSZ electrolytes by aerography and treated at 900 °C during 1 h in order to promote electrode adhesion. EIS spectra were collected between 500 and 800 °C in dry air. The Polarization Resistances (PR) values for La2NiO4/CGO/La2NiO4 cell are higher than those of La2NiO4/YSZ/La2NiO4. The PR for both cells and its evolution in time suggest that chemical reactivity is developed at 900 °C during the adhesion treatment and at T higher than 650 °C during the EIS measurements. The PR for Nd2NiO4/CGO/Nd2NiO4 and Nd2NiO4/YSZ/Nd2NiO4 are much lower than those of La2NiO4/CGO/La2NiO4 and La2NiO4/YSZ/La2NiO4 cells. These values and the slight increase of PR with time for Nd2NiO4 (NNO) electrodes indicate that the strength of chemical reactivity is much lower than that of La2NiO4 (LNO).
TEM results confirmed that reactivity between CGO and LNO is much higher than that of YSZ and LNO and also confirm that the strength of reactivity is appreciably lower for NNO as electrode material.
•FIB-TEM study on chemical reactivity between LNO/CGO, LNO/YSZ, NNO/CGO, NNO/YSZ.•FIB-TEM shows the beginning of the reactivity process.•EIS suggests reactivity at T > 600 °C while by XRD is observed at T > 800 °C.•LNO–CGO reactivity strength was higher than that of LNO–YSZ.•The strength of NNO reactivity with YSZ and CGO was lower than that of LNO.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jpowsour.2014.04.082</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-0816-278X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0378-7753 |
ispartof | Journal of power sources, 2014-11, Vol.265, p.6-13 |
issn | 0378-7753 1873-2755 |
language | eng |
recordid | cdi_pascalfrancis_primary_28513428 |
source | Access via ScienceDirect (Elsevier) |
subjects | Applied sciences Chemical reactivity Direct energy conversion and energy accumulation Electrical engineering. Electrical power engineering Electrical power engineering Electrochemical conversion: primary and secondary batteries, fuel cells Electrochemical Impedance Spectroscopy Energy Energy. Thermal use of fuels Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc Exact sciences and technology Fuel cells Interface Intermediate temperature-solid oxide fuel cell Ln2NiO4+δ Transmission Electron Microscopy-Focused Ion Beam |
title | Reactivity at the Ln2NiO4+δ/electrolyte interface (Ln = La, Nd) studied by Electrochemical Impedance Spectroscopy and Transmission Electron Microscopy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T04%3A14%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reactivity%20at%20the%20Ln2NiO4+%CE%B4/electrolyte%20interface%20(Ln%C2%A0=%C2%A0La,%20Nd)%20studied%20by%20Electrochemical%20Impedance%20Spectroscopy%20and%20Transmission%20Electron%20Microscopy&rft.jtitle=Journal%20of%20power%20sources&rft.au=Montenegro-Hern%C3%A1ndez,%20Alejandra&rft.date=2014-11-01&rft.volume=265&rft.spage=6&rft.epage=13&rft.pages=6-13&rft.issn=0378-7753&rft.eissn=1873-2755&rft.coden=JPSODZ&rft_id=info:doi/10.1016/j.jpowsour.2014.04.082&rft_dat=%3Celsevier_pasca%3ES0378775314005837%3C/elsevier_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0378775314005837&rfr_iscdi=true |