An Efficient Technique Based on Polynomial Chaos to Model the Uncertainty in the Resonance Frequency of Textile Antennas Due to Bending
The generalized polynomial chaos theory is combined with a dedicated cavity model for curved textile antennas to statistically quantify variations in the antenna's resonance frequency under randomly varying bending conditions. The nonintrusive stochastic method solves the dispersion relation fo...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on antennas and propagation 2014-03, Vol.62 (3), p.1253-1260 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1260 |
---|---|
container_issue | 3 |
container_start_page | 1253 |
container_title | IEEE transactions on antennas and propagation |
container_volume | 62 |
creator | Boeykens, Freek Rogier, Hendrik Vallozzi, Luigi |
description | The generalized polynomial chaos theory is combined with a dedicated cavity model for curved textile antennas to statistically quantify variations in the antenna's resonance frequency under randomly varying bending conditions. The nonintrusive stochastic method solves the dispersion relation for the resonance frequencies of a set of radius of curvature realizations corresponding to the Gauss quadrature points belonging to the orthogonal polynomials having the probability density function of the random variable as a weighting function. The formalism is applied to different distributions for the radius of curvature, either using a priori known or on-the-fly constructed sets of orthogonal polynomials. Numerical and experimental validation shows that the new approach is at least as accurate as Monte Carlo simulations while being at least 100 times faster. This makes the method especially suited as a design tool to account for performance variability when textile antennas are deployed on persons with varying body morphology. |
doi_str_mv | 10.1109/TAP.2013.2294021 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_28402703</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6678552</ieee_id><sourcerecordid>1685781793</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-e523d4116b9dbdd82f204072ba0463e842d7182b6eca0ff1d606b373e9b347223</originalsourceid><addsrcrecordid>eNpdkUGLFDEQhYMoOK7eBS8BEbz0mFSn0-nj7LirwoqLzIK3kE4qTpaeZE16wPkF_m0zzrAHT0VVvnp51CPkNWdLztnwYbO6XQLj7RJgEAz4E7LgXacaAOBPyYIxrpoB5I_n5EUp97UVSogF-bOK9Mr7YAPGmW7QbmP4tUd6aQo6miK9TdMhpl0wE11vTSp0TvRrcjjReYv0LlrMswlxPtAQ_42-Y0nR1Dm9zliloj3Q5Kv07zlMSFdxxhhNoR_rL1XrEqML8edL8sybqeCrc70gd9dXm_Xn5ubbpy_r1U1jhYS5wQ5aJziX4-BG5xR4YIL1MBomZItKgOu5glGiNcx77iSTY9u3OIyt6AHaC_L-pPuQUzVXZr0LxeI0mYhpXzSXqusV74e2om__Q-_TPsfqTvOO9VJ0HLpKsRNlcyolo9cPOexMPmjO9DEZXZPRx2T0OZm68u4sbIo1k8_1WqE87oGqVM-OBt6cuICIj89S9qqrZ_gL19GWHQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1507645125</pqid></control><display><type>article</type><title>An Efficient Technique Based on Polynomial Chaos to Model the Uncertainty in the Resonance Frequency of Textile Antennas Due to Bending</title><source>IEEE Electronic Library (IEL)</source><creator>Boeykens, Freek ; Rogier, Hendrik ; Vallozzi, Luigi</creator><creatorcontrib>Boeykens, Freek ; Rogier, Hendrik ; Vallozzi, Luigi</creatorcontrib><description>The generalized polynomial chaos theory is combined with a dedicated cavity model for curved textile antennas to statistically quantify variations in the antenna's resonance frequency under randomly varying bending conditions. The nonintrusive stochastic method solves the dispersion relation for the resonance frequencies of a set of radius of curvature realizations corresponding to the Gauss quadrature points belonging to the orthogonal polynomials having the probability density function of the random variable as a weighting function. The formalism is applied to different distributions for the radius of curvature, either using a priori known or on-the-fly constructed sets of orthogonal polynomials. Numerical and experimental validation shows that the new approach is at least as accurate as Monte Carlo simulations while being at least 100 times faster. This makes the method especially suited as a design tool to account for performance variability when textile antennas are deployed on persons with varying body morphology.</description><identifier>ISSN: 0018-926X</identifier><identifier>EISSN: 1558-2221</identifier><identifier>DOI: 10.1109/TAP.2013.2294021</identifier><identifier>CODEN: IETPAK</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Antennas ; Applied sciences ; Bending ; Chaos theory ; Computer simulation ; Economic models ; Exact sciences and technology ; Flexible electronics ; Gaussian distribution ; Mathematical models ; microstrip antennas ; Monte Carlo methods ; Monte Carlo simulation ; Polynomials ; Prototypes ; Radiocommunications ; Radius of curvature ; random variables ; Resonant frequency ; statistical analysis ; Telecommunications ; Telecommunications and information theory ; Textile antennas ; Textiles</subject><ispartof>IEEE transactions on antennas and propagation, 2014-03, Vol.62 (3), p.1253-1260</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Mar 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-e523d4116b9dbdd82f204072ba0463e842d7182b6eca0ff1d606b373e9b347223</citedby><cites>FETCH-LOGICAL-c462t-e523d4116b9dbdd82f204072ba0463e842d7182b6eca0ff1d606b373e9b347223</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6678552$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27911,27912,54745</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6678552$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28402703$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Boeykens, Freek</creatorcontrib><creatorcontrib>Rogier, Hendrik</creatorcontrib><creatorcontrib>Vallozzi, Luigi</creatorcontrib><title>An Efficient Technique Based on Polynomial Chaos to Model the Uncertainty in the Resonance Frequency of Textile Antennas Due to Bending</title><title>IEEE transactions on antennas and propagation</title><addtitle>TAP</addtitle><description>The generalized polynomial chaos theory is combined with a dedicated cavity model for curved textile antennas to statistically quantify variations in the antenna's resonance frequency under randomly varying bending conditions. The nonintrusive stochastic method solves the dispersion relation for the resonance frequencies of a set of radius of curvature realizations corresponding to the Gauss quadrature points belonging to the orthogonal polynomials having the probability density function of the random variable as a weighting function. The formalism is applied to different distributions for the radius of curvature, either using a priori known or on-the-fly constructed sets of orthogonal polynomials. Numerical and experimental validation shows that the new approach is at least as accurate as Monte Carlo simulations while being at least 100 times faster. This makes the method especially suited as a design tool to account for performance variability when textile antennas are deployed on persons with varying body morphology.</description><subject>Antennas</subject><subject>Applied sciences</subject><subject>Bending</subject><subject>Chaos theory</subject><subject>Computer simulation</subject><subject>Economic models</subject><subject>Exact sciences and technology</subject><subject>Flexible electronics</subject><subject>Gaussian distribution</subject><subject>Mathematical models</subject><subject>microstrip antennas</subject><subject>Monte Carlo methods</subject><subject>Monte Carlo simulation</subject><subject>Polynomials</subject><subject>Prototypes</subject><subject>Radiocommunications</subject><subject>Radius of curvature</subject><subject>random variables</subject><subject>Resonant frequency</subject><subject>statistical analysis</subject><subject>Telecommunications</subject><subject>Telecommunications and information theory</subject><subject>Textile antennas</subject><subject>Textiles</subject><issn>0018-926X</issn><issn>1558-2221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkUGLFDEQhYMoOK7eBS8BEbz0mFSn0-nj7LirwoqLzIK3kE4qTpaeZE16wPkF_m0zzrAHT0VVvnp51CPkNWdLztnwYbO6XQLj7RJgEAz4E7LgXacaAOBPyYIxrpoB5I_n5EUp97UVSogF-bOK9Mr7YAPGmW7QbmP4tUd6aQo6miK9TdMhpl0wE11vTSp0TvRrcjjReYv0LlrMswlxPtAQ_42-Y0nR1Dm9zliloj3Q5Kv07zlMSFdxxhhNoR_rL1XrEqML8edL8sybqeCrc70gd9dXm_Xn5ubbpy_r1U1jhYS5wQ5aJziX4-BG5xR4YIL1MBomZItKgOu5glGiNcx77iSTY9u3OIyt6AHaC_L-pPuQUzVXZr0LxeI0mYhpXzSXqusV74e2om__Q-_TPsfqTvOO9VJ0HLpKsRNlcyolo9cPOexMPmjO9DEZXZPRx2T0OZm68u4sbIo1k8_1WqE87oGqVM-OBt6cuICIj89S9qqrZ_gL19GWHQ</recordid><startdate>20140301</startdate><enddate>20140301</enddate><creator>Boeykens, Freek</creator><creator>Rogier, Hendrik</creator><creator>Vallozzi, Luigi</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20140301</creationdate><title>An Efficient Technique Based on Polynomial Chaos to Model the Uncertainty in the Resonance Frequency of Textile Antennas Due to Bending</title><author>Boeykens, Freek ; Rogier, Hendrik ; Vallozzi, Luigi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-e523d4116b9dbdd82f204072ba0463e842d7182b6eca0ff1d606b373e9b347223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Antennas</topic><topic>Applied sciences</topic><topic>Bending</topic><topic>Chaos theory</topic><topic>Computer simulation</topic><topic>Economic models</topic><topic>Exact sciences and technology</topic><topic>Flexible electronics</topic><topic>Gaussian distribution</topic><topic>Mathematical models</topic><topic>microstrip antennas</topic><topic>Monte Carlo methods</topic><topic>Monte Carlo simulation</topic><topic>Polynomials</topic><topic>Prototypes</topic><topic>Radiocommunications</topic><topic>Radius of curvature</topic><topic>random variables</topic><topic>Resonant frequency</topic><topic>statistical analysis</topic><topic>Telecommunications</topic><topic>Telecommunications and information theory</topic><topic>Textile antennas</topic><topic>Textiles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boeykens, Freek</creatorcontrib><creatorcontrib>Rogier, Hendrik</creatorcontrib><creatorcontrib>Vallozzi, Luigi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on antennas and propagation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Boeykens, Freek</au><au>Rogier, Hendrik</au><au>Vallozzi, Luigi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Efficient Technique Based on Polynomial Chaos to Model the Uncertainty in the Resonance Frequency of Textile Antennas Due to Bending</atitle><jtitle>IEEE transactions on antennas and propagation</jtitle><stitle>TAP</stitle><date>2014-03-01</date><risdate>2014</risdate><volume>62</volume><issue>3</issue><spage>1253</spage><epage>1260</epage><pages>1253-1260</pages><issn>0018-926X</issn><eissn>1558-2221</eissn><coden>IETPAK</coden><abstract>The generalized polynomial chaos theory is combined with a dedicated cavity model for curved textile antennas to statistically quantify variations in the antenna's resonance frequency under randomly varying bending conditions. The nonintrusive stochastic method solves the dispersion relation for the resonance frequencies of a set of radius of curvature realizations corresponding to the Gauss quadrature points belonging to the orthogonal polynomials having the probability density function of the random variable as a weighting function. The formalism is applied to different distributions for the radius of curvature, either using a priori known or on-the-fly constructed sets of orthogonal polynomials. Numerical and experimental validation shows that the new approach is at least as accurate as Monte Carlo simulations while being at least 100 times faster. This makes the method especially suited as a design tool to account for performance variability when textile antennas are deployed on persons with varying body morphology.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TAP.2013.2294021</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-926X |
ispartof | IEEE transactions on antennas and propagation, 2014-03, Vol.62 (3), p.1253-1260 |
issn | 0018-926X 1558-2221 |
language | eng |
recordid | cdi_pascalfrancis_primary_28402703 |
source | IEEE Electronic Library (IEL) |
subjects | Antennas Applied sciences Bending Chaos theory Computer simulation Economic models Exact sciences and technology Flexible electronics Gaussian distribution Mathematical models microstrip antennas Monte Carlo methods Monte Carlo simulation Polynomials Prototypes Radiocommunications Radius of curvature random variables Resonant frequency statistical analysis Telecommunications Telecommunications and information theory Textile antennas Textiles |
title | An Efficient Technique Based on Polynomial Chaos to Model the Uncertainty in the Resonance Frequency of Textile Antennas Due to Bending |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T10%3A58%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Efficient%20Technique%20Based%20on%20Polynomial%20Chaos%20to%20Model%20the%20Uncertainty%20in%20the%20Resonance%20Frequency%20of%20Textile%20Antennas%20Due%20to%20Bending&rft.jtitle=IEEE%20transactions%20on%20antennas%20and%20propagation&rft.au=Boeykens,%20Freek&rft.date=2014-03-01&rft.volume=62&rft.issue=3&rft.spage=1253&rft.epage=1260&rft.pages=1253-1260&rft.issn=0018-926X&rft.eissn=1558-2221&rft.coden=IETPAK&rft_id=info:doi/10.1109/TAP.2013.2294021&rft_dat=%3Cproquest_RIE%3E1685781793%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1507645125&rft_id=info:pmid/&rft_ieee_id=6678552&rfr_iscdi=true |