Reinforcement Q-learning for optimal tracking control of linear discrete-time systems with unknown dynamics

In this paper, a novel approach based on the Q-learning algorithm is proposed to solve the infinite-horizon linear quadratic tracker (LQT) for unknown discrete-time systems in a causal manner. It is assumed that the reference trajectory is generated by a linear command generator system. An augmented...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Automatica (Oxford) 2014-04, Vol.50 (4), p.1167-1175
Hauptverfasser: Kiumarsi, Bahare, Lewis, Frank L., Modares, Hamidreza, Karimpour, Ali, Naghibi-Sistani, Mohammad-Bagher
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1175
container_issue 4
container_start_page 1167
container_title Automatica (Oxford)
container_volume 50
creator Kiumarsi, Bahare
Lewis, Frank L.
Modares, Hamidreza
Karimpour, Ali
Naghibi-Sistani, Mohammad-Bagher
description In this paper, a novel approach based on the Q-learning algorithm is proposed to solve the infinite-horizon linear quadratic tracker (LQT) for unknown discrete-time systems in a causal manner. It is assumed that the reference trajectory is generated by a linear command generator system. An augmented system composed of the original system and the command generator is constructed and it is shown that the value function for the LQT is quadratic in terms of the state of the augmented system. Using the quadratic structure of the value function, a Bellman equation and an augmented algebraic Riccati equation (ARE) for solving the LQT are derived. In contrast to the standard solution of the LQT, which requires the solution of an ARE and a noncausal difference equation simultaneously, in the proposed method the optimal control input is obtained by only solving an augmented ARE. A Q-learning algorithm is developed to solve online the augmented ARE without any knowledge about the system dynamics or the command generator. Convergence to the optimal solution is shown. A simulation example is used to verify the effectiveness of the proposed control scheme.
doi_str_mv 10.1016/j.automatica.2014.02.015
format Article
fullrecord <record><control><sourceid>elsevier_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_28387870</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0005109814000533</els_id><sourcerecordid>S0005109814000533</sourcerecordid><originalsourceid>FETCH-LOGICAL-e244t-b73e725a0383c43d45b55810b33355fb46362fade988399d835a76962d860f33</originalsourceid><addsrcrecordid>eNpFkE1LAzEQhoMoWKv_IRePu-Zjs5s9avELBFF6D2kyq2l3k5Kklv57Uyp4Gubl4WXmQQhTUlNC27t1rXc5TDo7o2tGaFMTVhMqztCMyo5XTPL2HM0IIaKipJeX6CqldVkbKtkMbT7B-SFEAxP4jD-qEXT0zn_hEuKwzW7SI85Rm80xNMHnGEYcBjw6X1BsXTIRMlSFBJwOKcOU8N7lb7zzGx_2HtuD15Mz6RpdDHpMcPM352j59LhcvFRv78-vi_u3CljT5GrVceiY0IRLbhpuG7ESQlKy4pwLMayalrds0BZ6KXnfW8mF7tq-ZVa2ZOB8jm5PtVudjB6HqL1xSW1jeSUeVBEiO9mRwj2cOCi3_DiIKhkH3oB1EUxWNjhFiTpaVmv1b1kdLSvCVLHMfwFz5HZa</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Reinforcement Q-learning for optimal tracking control of linear discrete-time systems with unknown dynamics</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Kiumarsi, Bahare ; Lewis, Frank L. ; Modares, Hamidreza ; Karimpour, Ali ; Naghibi-Sistani, Mohammad-Bagher</creator><creatorcontrib>Kiumarsi, Bahare ; Lewis, Frank L. ; Modares, Hamidreza ; Karimpour, Ali ; Naghibi-Sistani, Mohammad-Bagher</creatorcontrib><description>In this paper, a novel approach based on the Q-learning algorithm is proposed to solve the infinite-horizon linear quadratic tracker (LQT) for unknown discrete-time systems in a causal manner. It is assumed that the reference trajectory is generated by a linear command generator system. An augmented system composed of the original system and the command generator is constructed and it is shown that the value function for the LQT is quadratic in terms of the state of the augmented system. Using the quadratic structure of the value function, a Bellman equation and an augmented algebraic Riccati equation (ARE) for solving the LQT are derived. In contrast to the standard solution of the LQT, which requires the solution of an ARE and a noncausal difference equation simultaneously, in the proposed method the optimal control input is obtained by only solving an augmented ARE. A Q-learning algorithm is developed to solve online the augmented ARE without any knowledge about the system dynamics or the command generator. Convergence to the optimal solution is shown. A simulation example is used to verify the effectiveness of the proposed control scheme.</description><identifier>ISSN: 0005-1098</identifier><identifier>EISSN: 1873-2836</identifier><identifier>DOI: 10.1016/j.automatica.2014.02.015</identifier><identifier>CODEN: ATCAA9</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Adaptative systems ; Algebraic Riccati equation ; Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Control theory. Systems ; Exact sciences and technology ; Learning and adaptive systems ; Linear quadratic tracker ; Optimal control ; Policy iteration ; Reinforcement learning</subject><ispartof>Automatica (Oxford), 2014-04, Vol.50 (4), p.1167-1175</ispartof><rights>2014 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.automatica.2014.02.015$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28387870$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kiumarsi, Bahare</creatorcontrib><creatorcontrib>Lewis, Frank L.</creatorcontrib><creatorcontrib>Modares, Hamidreza</creatorcontrib><creatorcontrib>Karimpour, Ali</creatorcontrib><creatorcontrib>Naghibi-Sistani, Mohammad-Bagher</creatorcontrib><title>Reinforcement Q-learning for optimal tracking control of linear discrete-time systems with unknown dynamics</title><title>Automatica (Oxford)</title><description>In this paper, a novel approach based on the Q-learning algorithm is proposed to solve the infinite-horizon linear quadratic tracker (LQT) for unknown discrete-time systems in a causal manner. It is assumed that the reference trajectory is generated by a linear command generator system. An augmented system composed of the original system and the command generator is constructed and it is shown that the value function for the LQT is quadratic in terms of the state of the augmented system. Using the quadratic structure of the value function, a Bellman equation and an augmented algebraic Riccati equation (ARE) for solving the LQT are derived. In contrast to the standard solution of the LQT, which requires the solution of an ARE and a noncausal difference equation simultaneously, in the proposed method the optimal control input is obtained by only solving an augmented ARE. A Q-learning algorithm is developed to solve online the augmented ARE without any knowledge about the system dynamics or the command generator. Convergence to the optimal solution is shown. A simulation example is used to verify the effectiveness of the proposed control scheme.</description><subject>Adaptative systems</subject><subject>Algebraic Riccati equation</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Control theory. Systems</subject><subject>Exact sciences and technology</subject><subject>Learning and adaptive systems</subject><subject>Linear quadratic tracker</subject><subject>Optimal control</subject><subject>Policy iteration</subject><subject>Reinforcement learning</subject><issn>0005-1098</issn><issn>1873-2836</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpFkE1LAzEQhoMoWKv_IRePu-Zjs5s9avELBFF6D2kyq2l3k5Kklv57Uyp4Gubl4WXmQQhTUlNC27t1rXc5TDo7o2tGaFMTVhMqztCMyo5XTPL2HM0IIaKipJeX6CqldVkbKtkMbT7B-SFEAxP4jD-qEXT0zn_hEuKwzW7SI85Rm80xNMHnGEYcBjw6X1BsXTIRMlSFBJwOKcOU8N7lb7zzGx_2HtuD15Mz6RpdDHpMcPM352j59LhcvFRv78-vi_u3CljT5GrVceiY0IRLbhpuG7ESQlKy4pwLMayalrds0BZ6KXnfW8mF7tq-ZVa2ZOB8jm5PtVudjB6HqL1xSW1jeSUeVBEiO9mRwj2cOCi3_DiIKhkH3oB1EUxWNjhFiTpaVmv1b1kdLSvCVLHMfwFz5HZa</recordid><startdate>20140401</startdate><enddate>20140401</enddate><creator>Kiumarsi, Bahare</creator><creator>Lewis, Frank L.</creator><creator>Modares, Hamidreza</creator><creator>Karimpour, Ali</creator><creator>Naghibi-Sistani, Mohammad-Bagher</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope></search><sort><creationdate>20140401</creationdate><title>Reinforcement Q-learning for optimal tracking control of linear discrete-time systems with unknown dynamics</title><author>Kiumarsi, Bahare ; Lewis, Frank L. ; Modares, Hamidreza ; Karimpour, Ali ; Naghibi-Sistani, Mohammad-Bagher</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-e244t-b73e725a0383c43d45b55810b33355fb46362fade988399d835a76962d860f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Adaptative systems</topic><topic>Algebraic Riccati equation</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Control theory. Systems</topic><topic>Exact sciences and technology</topic><topic>Learning and adaptive systems</topic><topic>Linear quadratic tracker</topic><topic>Optimal control</topic><topic>Policy iteration</topic><topic>Reinforcement learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kiumarsi, Bahare</creatorcontrib><creatorcontrib>Lewis, Frank L.</creatorcontrib><creatorcontrib>Modares, Hamidreza</creatorcontrib><creatorcontrib>Karimpour, Ali</creatorcontrib><creatorcontrib>Naghibi-Sistani, Mohammad-Bagher</creatorcontrib><collection>Pascal-Francis</collection><jtitle>Automatica (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kiumarsi, Bahare</au><au>Lewis, Frank L.</au><au>Modares, Hamidreza</au><au>Karimpour, Ali</au><au>Naghibi-Sistani, Mohammad-Bagher</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reinforcement Q-learning for optimal tracking control of linear discrete-time systems with unknown dynamics</atitle><jtitle>Automatica (Oxford)</jtitle><date>2014-04-01</date><risdate>2014</risdate><volume>50</volume><issue>4</issue><spage>1167</spage><epage>1175</epage><pages>1167-1175</pages><issn>0005-1098</issn><eissn>1873-2836</eissn><coden>ATCAA9</coden><abstract>In this paper, a novel approach based on the Q-learning algorithm is proposed to solve the infinite-horizon linear quadratic tracker (LQT) for unknown discrete-time systems in a causal manner. It is assumed that the reference trajectory is generated by a linear command generator system. An augmented system composed of the original system and the command generator is constructed and it is shown that the value function for the LQT is quadratic in terms of the state of the augmented system. Using the quadratic structure of the value function, a Bellman equation and an augmented algebraic Riccati equation (ARE) for solving the LQT are derived. In contrast to the standard solution of the LQT, which requires the solution of an ARE and a noncausal difference equation simultaneously, in the proposed method the optimal control input is obtained by only solving an augmented ARE. A Q-learning algorithm is developed to solve online the augmented ARE without any knowledge about the system dynamics or the command generator. Convergence to the optimal solution is shown. A simulation example is used to verify the effectiveness of the proposed control scheme.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.automatica.2014.02.015</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0005-1098
ispartof Automatica (Oxford), 2014-04, Vol.50 (4), p.1167-1175
issn 0005-1098
1873-2836
language eng
recordid cdi_pascalfrancis_primary_28387870
source Elsevier ScienceDirect Journals Complete
subjects Adaptative systems
Algebraic Riccati equation
Applied sciences
Artificial intelligence
Computer science
control theory
systems
Control theory. Systems
Exact sciences and technology
Learning and adaptive systems
Linear quadratic tracker
Optimal control
Policy iteration
Reinforcement learning
title Reinforcement Q-learning for optimal tracking control of linear discrete-time systems with unknown dynamics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T03%3A54%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reinforcement%20Q-learning%20for%20optimal%20tracking%20control%20of%20linear%20discrete-time%20systems%20with%20unknown%20dynamics&rft.jtitle=Automatica%20(Oxford)&rft.au=Kiumarsi,%20Bahare&rft.date=2014-04-01&rft.volume=50&rft.issue=4&rft.spage=1167&rft.epage=1175&rft.pages=1167-1175&rft.issn=0005-1098&rft.eissn=1873-2836&rft.coden=ATCAA9&rft_id=info:doi/10.1016/j.automatica.2014.02.015&rft_dat=%3Celsevier_pasca%3ES0005109814000533%3C/elsevier_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0005109814000533&rfr_iscdi=true