Reinforcement Q-learning for optimal tracking control of linear discrete-time systems with unknown dynamics
In this paper, a novel approach based on the Q-learning algorithm is proposed to solve the infinite-horizon linear quadratic tracker (LQT) for unknown discrete-time systems in a causal manner. It is assumed that the reference trajectory is generated by a linear command generator system. An augmented...
Gespeichert in:
Veröffentlicht in: | Automatica (Oxford) 2014-04, Vol.50 (4), p.1167-1175 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1175 |
---|---|
container_issue | 4 |
container_start_page | 1167 |
container_title | Automatica (Oxford) |
container_volume | 50 |
creator | Kiumarsi, Bahare Lewis, Frank L. Modares, Hamidreza Karimpour, Ali Naghibi-Sistani, Mohammad-Bagher |
description | In this paper, a novel approach based on the Q-learning algorithm is proposed to solve the infinite-horizon linear quadratic tracker (LQT) for unknown discrete-time systems in a causal manner. It is assumed that the reference trajectory is generated by a linear command generator system. An augmented system composed of the original system and the command generator is constructed and it is shown that the value function for the LQT is quadratic in terms of the state of the augmented system. Using the quadratic structure of the value function, a Bellman equation and an augmented algebraic Riccati equation (ARE) for solving the LQT are derived. In contrast to the standard solution of the LQT, which requires the solution of an ARE and a noncausal difference equation simultaneously, in the proposed method the optimal control input is obtained by only solving an augmented ARE. A Q-learning algorithm is developed to solve online the augmented ARE without any knowledge about the system dynamics or the command generator. Convergence to the optimal solution is shown. A simulation example is used to verify the effectiveness of the proposed control scheme. |
doi_str_mv | 10.1016/j.automatica.2014.02.015 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_28387870</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0005109814000533</els_id><sourcerecordid>S0005109814000533</sourcerecordid><originalsourceid>FETCH-LOGICAL-e244t-b73e725a0383c43d45b55810b33355fb46362fade988399d835a76962d860f33</originalsourceid><addsrcrecordid>eNpFkE1LAzEQhoMoWKv_IRePu-Zjs5s9avELBFF6D2kyq2l3k5Kklv57Uyp4Gubl4WXmQQhTUlNC27t1rXc5TDo7o2tGaFMTVhMqztCMyo5XTPL2HM0IIaKipJeX6CqldVkbKtkMbT7B-SFEAxP4jD-qEXT0zn_hEuKwzW7SI85Rm80xNMHnGEYcBjw6X1BsXTIRMlSFBJwOKcOU8N7lb7zzGx_2HtuD15Mz6RpdDHpMcPM352j59LhcvFRv78-vi_u3CljT5GrVceiY0IRLbhpuG7ESQlKy4pwLMayalrds0BZ6KXnfW8mF7tq-ZVa2ZOB8jm5PtVudjB6HqL1xSW1jeSUeVBEiO9mRwj2cOCi3_DiIKhkH3oB1EUxWNjhFiTpaVmv1b1kdLSvCVLHMfwFz5HZa</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Reinforcement Q-learning for optimal tracking control of linear discrete-time systems with unknown dynamics</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Kiumarsi, Bahare ; Lewis, Frank L. ; Modares, Hamidreza ; Karimpour, Ali ; Naghibi-Sistani, Mohammad-Bagher</creator><creatorcontrib>Kiumarsi, Bahare ; Lewis, Frank L. ; Modares, Hamidreza ; Karimpour, Ali ; Naghibi-Sistani, Mohammad-Bagher</creatorcontrib><description>In this paper, a novel approach based on the Q-learning algorithm is proposed to solve the infinite-horizon linear quadratic tracker (LQT) for unknown discrete-time systems in a causal manner. It is assumed that the reference trajectory is generated by a linear command generator system. An augmented system composed of the original system and the command generator is constructed and it is shown that the value function for the LQT is quadratic in terms of the state of the augmented system. Using the quadratic structure of the value function, a Bellman equation and an augmented algebraic Riccati equation (ARE) for solving the LQT are derived. In contrast to the standard solution of the LQT, which requires the solution of an ARE and a noncausal difference equation simultaneously, in the proposed method the optimal control input is obtained by only solving an augmented ARE. A Q-learning algorithm is developed to solve online the augmented ARE without any knowledge about the system dynamics or the command generator. Convergence to the optimal solution is shown. A simulation example is used to verify the effectiveness of the proposed control scheme.</description><identifier>ISSN: 0005-1098</identifier><identifier>EISSN: 1873-2836</identifier><identifier>DOI: 10.1016/j.automatica.2014.02.015</identifier><identifier>CODEN: ATCAA9</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Adaptative systems ; Algebraic Riccati equation ; Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Control theory. Systems ; Exact sciences and technology ; Learning and adaptive systems ; Linear quadratic tracker ; Optimal control ; Policy iteration ; Reinforcement learning</subject><ispartof>Automatica (Oxford), 2014-04, Vol.50 (4), p.1167-1175</ispartof><rights>2014 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.automatica.2014.02.015$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28387870$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kiumarsi, Bahare</creatorcontrib><creatorcontrib>Lewis, Frank L.</creatorcontrib><creatorcontrib>Modares, Hamidreza</creatorcontrib><creatorcontrib>Karimpour, Ali</creatorcontrib><creatorcontrib>Naghibi-Sistani, Mohammad-Bagher</creatorcontrib><title>Reinforcement Q-learning for optimal tracking control of linear discrete-time systems with unknown dynamics</title><title>Automatica (Oxford)</title><description>In this paper, a novel approach based on the Q-learning algorithm is proposed to solve the infinite-horizon linear quadratic tracker (LQT) for unknown discrete-time systems in a causal manner. It is assumed that the reference trajectory is generated by a linear command generator system. An augmented system composed of the original system and the command generator is constructed and it is shown that the value function for the LQT is quadratic in terms of the state of the augmented system. Using the quadratic structure of the value function, a Bellman equation and an augmented algebraic Riccati equation (ARE) for solving the LQT are derived. In contrast to the standard solution of the LQT, which requires the solution of an ARE and a noncausal difference equation simultaneously, in the proposed method the optimal control input is obtained by only solving an augmented ARE. A Q-learning algorithm is developed to solve online the augmented ARE without any knowledge about the system dynamics or the command generator. Convergence to the optimal solution is shown. A simulation example is used to verify the effectiveness of the proposed control scheme.</description><subject>Adaptative systems</subject><subject>Algebraic Riccati equation</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Control theory. Systems</subject><subject>Exact sciences and technology</subject><subject>Learning and adaptive systems</subject><subject>Linear quadratic tracker</subject><subject>Optimal control</subject><subject>Policy iteration</subject><subject>Reinforcement learning</subject><issn>0005-1098</issn><issn>1873-2836</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpFkE1LAzEQhoMoWKv_IRePu-Zjs5s9avELBFF6D2kyq2l3k5Kklv57Uyp4Gubl4WXmQQhTUlNC27t1rXc5TDo7o2tGaFMTVhMqztCMyo5XTPL2HM0IIaKipJeX6CqldVkbKtkMbT7B-SFEAxP4jD-qEXT0zn_hEuKwzW7SI85Rm80xNMHnGEYcBjw6X1BsXTIRMlSFBJwOKcOU8N7lb7zzGx_2HtuD15Mz6RpdDHpMcPM352j59LhcvFRv78-vi_u3CljT5GrVceiY0IRLbhpuG7ESQlKy4pwLMayalrds0BZ6KXnfW8mF7tq-ZVa2ZOB8jm5PtVudjB6HqL1xSW1jeSUeVBEiO9mRwj2cOCi3_DiIKhkH3oB1EUxWNjhFiTpaVmv1b1kdLSvCVLHMfwFz5HZa</recordid><startdate>20140401</startdate><enddate>20140401</enddate><creator>Kiumarsi, Bahare</creator><creator>Lewis, Frank L.</creator><creator>Modares, Hamidreza</creator><creator>Karimpour, Ali</creator><creator>Naghibi-Sistani, Mohammad-Bagher</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope></search><sort><creationdate>20140401</creationdate><title>Reinforcement Q-learning for optimal tracking control of linear discrete-time systems with unknown dynamics</title><author>Kiumarsi, Bahare ; Lewis, Frank L. ; Modares, Hamidreza ; Karimpour, Ali ; Naghibi-Sistani, Mohammad-Bagher</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-e244t-b73e725a0383c43d45b55810b33355fb46362fade988399d835a76962d860f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Adaptative systems</topic><topic>Algebraic Riccati equation</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Control theory. Systems</topic><topic>Exact sciences and technology</topic><topic>Learning and adaptive systems</topic><topic>Linear quadratic tracker</topic><topic>Optimal control</topic><topic>Policy iteration</topic><topic>Reinforcement learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kiumarsi, Bahare</creatorcontrib><creatorcontrib>Lewis, Frank L.</creatorcontrib><creatorcontrib>Modares, Hamidreza</creatorcontrib><creatorcontrib>Karimpour, Ali</creatorcontrib><creatorcontrib>Naghibi-Sistani, Mohammad-Bagher</creatorcontrib><collection>Pascal-Francis</collection><jtitle>Automatica (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kiumarsi, Bahare</au><au>Lewis, Frank L.</au><au>Modares, Hamidreza</au><au>Karimpour, Ali</au><au>Naghibi-Sistani, Mohammad-Bagher</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reinforcement Q-learning for optimal tracking control of linear discrete-time systems with unknown dynamics</atitle><jtitle>Automatica (Oxford)</jtitle><date>2014-04-01</date><risdate>2014</risdate><volume>50</volume><issue>4</issue><spage>1167</spage><epage>1175</epage><pages>1167-1175</pages><issn>0005-1098</issn><eissn>1873-2836</eissn><coden>ATCAA9</coden><abstract>In this paper, a novel approach based on the Q-learning algorithm is proposed to solve the infinite-horizon linear quadratic tracker (LQT) for unknown discrete-time systems in a causal manner. It is assumed that the reference trajectory is generated by a linear command generator system. An augmented system composed of the original system and the command generator is constructed and it is shown that the value function for the LQT is quadratic in terms of the state of the augmented system. Using the quadratic structure of the value function, a Bellman equation and an augmented algebraic Riccati equation (ARE) for solving the LQT are derived. In contrast to the standard solution of the LQT, which requires the solution of an ARE and a noncausal difference equation simultaneously, in the proposed method the optimal control input is obtained by only solving an augmented ARE. A Q-learning algorithm is developed to solve online the augmented ARE without any knowledge about the system dynamics or the command generator. Convergence to the optimal solution is shown. A simulation example is used to verify the effectiveness of the proposed control scheme.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.automatica.2014.02.015</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0005-1098 |
ispartof | Automatica (Oxford), 2014-04, Vol.50 (4), p.1167-1175 |
issn | 0005-1098 1873-2836 |
language | eng |
recordid | cdi_pascalfrancis_primary_28387870 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Adaptative systems Algebraic Riccati equation Applied sciences Artificial intelligence Computer science control theory systems Control theory. Systems Exact sciences and technology Learning and adaptive systems Linear quadratic tracker Optimal control Policy iteration Reinforcement learning |
title | Reinforcement Q-learning for optimal tracking control of linear discrete-time systems with unknown dynamics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T03%3A54%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reinforcement%20Q-learning%20for%20optimal%20tracking%20control%20of%20linear%20discrete-time%20systems%20with%20unknown%20dynamics&rft.jtitle=Automatica%20(Oxford)&rft.au=Kiumarsi,%20Bahare&rft.date=2014-04-01&rft.volume=50&rft.issue=4&rft.spage=1167&rft.epage=1175&rft.pages=1167-1175&rft.issn=0005-1098&rft.eissn=1873-2836&rft.coden=ATCAA9&rft_id=info:doi/10.1016/j.automatica.2014.02.015&rft_dat=%3Celsevier_pasca%3ES0005109814000533%3C/elsevier_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0005109814000533&rfr_iscdi=true |