Cosecant-squared pattern synthesis method for broadband-shaped reflector antennas
A new technique based on the invasive weed optimisation (IWO) algorithm and geometrical optics (GO) method for synthesising broadband cosecant-squared pattern reflector antennas is presented. The main feature that distinguishes this technique from others is the wide bandwidth. Moreover, compared wit...
Gespeichert in:
Veröffentlicht in: | IET microwaves, antennas & propagation antennas & propagation, 2014-04, Vol.8 (5), p.328-336 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 336 |
---|---|
container_issue | 5 |
container_start_page | 328 |
container_title | IET microwaves, antennas & propagation |
container_volume | 8 |
creator | Dastranj, Ali Akbar Abiri, Habibollah Mallahzadeh, Ali Reza |
description | A new technique based on the invasive weed optimisation (IWO) algorithm and geometrical optics (GO) method for synthesising broadband cosecant-squared pattern reflector antennas is presented. The main feature that distinguishes this technique from others is the wide bandwidth. Moreover, compared with the previous methods, the proposed method allows to obtain extremely smaller ripples in the shaped region and lower sidelobe level (SLL). To achieve the desired performance over the entire 18–40 GHz operational bandwidth, the reflector surface is synthesised using a complex and accurate frequency-dependent fitness function including optimum weighting values. The simulation results via FEKO software package further prove the validity and versatility of this technique for solving reflector synthesis problems. In addition, experimental investigations are conducted to understand the complete reflector antenna system behaviours. Measurements show a good agreement with the simulation results. At last, the efficiency of the proposed frequency-dependent IWO (FDIWO) method both in bandwidth and optimality of the results are compared with original IWO method, common GO method and electromagnetic radiation (TICRA) software package. Comparison results show that the FDIWO method outperforms the other techniques. |
doi_str_mv | 10.1049/iet-map.2013.0406 |
format | Article |
fullrecord | <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_pascalfrancis_primary_28355662</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3304483981</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5024-5dce35ac8b46ae16736020c95f320083fb4d7ae8c738251ba69a2e21907bc4b33</originalsourceid><addsrcrecordid>eNqFkE1r20AQhkVpIGnSH5CboBSag5z90Gjl3lyTtIaEpJCcl9FqhBXklbIjU_zvs8LBhNKS0w7s877MPElyLsVMinx-2dKYbXCYKSH1TOSi-JCcSAMyK43WHw-zguPkE_OTEACgzUnye9kzOfRjxs9bDFSnA44jBZ_yzo9r4pbTDY3rvk6bPqRV6LGu0NcZr3GIdKCmIzfGr9hB3iOfJUcNdkyfX9_T5PH66mH5K7u5-7laLm4yB0LlGdSONKArq7xAkoXRhVDCzaHRSohSN1VeG6TSGV0qkBUWc1Sk5FyYyuWV1qfJt33vEPrnLfFoNy076jr01G_ZSgApQEE5oV_-Qp_6bfBxu0ip3ChZgomU3FMu9MzxMDuEdoNhZ6Wwk2QbJdso2U6S7SQ5Zr6-NiM77JqA3rV8CKpSAxSFitz3Pfen7Wj3frG9XS3Uj2shlMxj-GIfnrDD5qurB3u7uH-TGeomstk_2P8f8AJ5MKvo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1524721857</pqid></control><display><type>article</type><title>Cosecant-squared pattern synthesis method for broadband-shaped reflector antennas</title><source>Wiley Online Library (Open Access Collection)</source><creator>Dastranj, Ali Akbar ; Abiri, Habibollah ; Mallahzadeh, Ali Reza</creator><creatorcontrib>Dastranj, Ali Akbar ; Abiri, Habibollah ; Mallahzadeh, Ali Reza</creatorcontrib><description>A new technique based on the invasive weed optimisation (IWO) algorithm and geometrical optics (GO) method for synthesising broadband cosecant-squared pattern reflector antennas is presented. The main feature that distinguishes this technique from others is the wide bandwidth. Moreover, compared with the previous methods, the proposed method allows to obtain extremely smaller ripples in the shaped region and lower sidelobe level (SLL). To achieve the desired performance over the entire 18–40 GHz operational bandwidth, the reflector surface is synthesised using a complex and accurate frequency-dependent fitness function including optimum weighting values. The simulation results via FEKO software package further prove the validity and versatility of this technique for solving reflector synthesis problems. In addition, experimental investigations are conducted to understand the complete reflector antenna system behaviours. Measurements show a good agreement with the simulation results. At last, the efficiency of the proposed frequency-dependent IWO (FDIWO) method both in bandwidth and optimality of the results are compared with original IWO method, common GO method and electromagnetic radiation (TICRA) software package. Comparison results show that the FDIWO method outperforms the other techniques.</description><identifier>ISSN: 1751-8725</identifier><identifier>ISSN: 1751-8733</identifier><identifier>EISSN: 1751-8733</identifier><identifier>DOI: 10.1049/iet-map.2013.0406</identifier><language>eng</language><publisher>Stevenage: The Institution of Engineering and Technology</publisher><subject>antenna radiation patterns ; Antennas ; Applied sciences ; Bandwidth ; bandwidth 18 GHz to 40 GHz ; broadband antennas ; broadband cosecant‐squared pattern reflector antennas ; Computer simulation ; cosecant‐squared pattern synthesis method ; Exact sciences and technology ; FEKO software package ; frequency‐dependent fitness function ; frequency‐dependent IWO method ; geometrical optics ; geometrical optics method ; invasive weed optimisation algorithm ; lower sidelobe level ; optimisation ; Optimization ; optimum weighting values ; Radiocommunications ; Reflector antennas ; reflector surface ; reflector synthesis problems ; Reflectors ; Ripples ; shaped region ; Software packages ; Synthesis ; Telecommunications ; Telecommunications and information theory ; TICRA software package</subject><ispartof>IET microwaves, antennas & propagation, 2014-04, Vol.8 (5), p.328-336</ispartof><rights>The Institution of Engineering and Technology</rights><rights>2014 The Institution of Engineering and Technology</rights><rights>2015 INIST-CNRS</rights><rights>Copyright The Institution of Engineering & Technology Apr 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5024-5dce35ac8b46ae16736020c95f320083fb4d7ae8c738251ba69a2e21907bc4b33</citedby><cites>FETCH-LOGICAL-c5024-5dce35ac8b46ae16736020c95f320083fb4d7ae8c738251ba69a2e21907bc4b33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1049%2Fiet-map.2013.0406$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1049%2Fiet-map.2013.0406$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,782,786,1419,11569,27931,27932,45581,45582,46059,46483</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1049%2Fiet-map.2013.0406$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28355662$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Dastranj, Ali Akbar</creatorcontrib><creatorcontrib>Abiri, Habibollah</creatorcontrib><creatorcontrib>Mallahzadeh, Ali Reza</creatorcontrib><title>Cosecant-squared pattern synthesis method for broadband-shaped reflector antennas</title><title>IET microwaves, antennas & propagation</title><description>A new technique based on the invasive weed optimisation (IWO) algorithm and geometrical optics (GO) method for synthesising broadband cosecant-squared pattern reflector antennas is presented. The main feature that distinguishes this technique from others is the wide bandwidth. Moreover, compared with the previous methods, the proposed method allows to obtain extremely smaller ripples in the shaped region and lower sidelobe level (SLL). To achieve the desired performance over the entire 18–40 GHz operational bandwidth, the reflector surface is synthesised using a complex and accurate frequency-dependent fitness function including optimum weighting values. The simulation results via FEKO software package further prove the validity and versatility of this technique for solving reflector synthesis problems. In addition, experimental investigations are conducted to understand the complete reflector antenna system behaviours. Measurements show a good agreement with the simulation results. At last, the efficiency of the proposed frequency-dependent IWO (FDIWO) method both in bandwidth and optimality of the results are compared with original IWO method, common GO method and electromagnetic radiation (TICRA) software package. Comparison results show that the FDIWO method outperforms the other techniques.</description><subject>antenna radiation patterns</subject><subject>Antennas</subject><subject>Applied sciences</subject><subject>Bandwidth</subject><subject>bandwidth 18 GHz to 40 GHz</subject><subject>broadband antennas</subject><subject>broadband cosecant‐squared pattern reflector antennas</subject><subject>Computer simulation</subject><subject>cosecant‐squared pattern synthesis method</subject><subject>Exact sciences and technology</subject><subject>FEKO software package</subject><subject>frequency‐dependent fitness function</subject><subject>frequency‐dependent IWO method</subject><subject>geometrical optics</subject><subject>geometrical optics method</subject><subject>invasive weed optimisation algorithm</subject><subject>lower sidelobe level</subject><subject>optimisation</subject><subject>Optimization</subject><subject>optimum weighting values</subject><subject>Radiocommunications</subject><subject>Reflector antennas</subject><subject>reflector surface</subject><subject>reflector synthesis problems</subject><subject>Reflectors</subject><subject>Ripples</subject><subject>shaped region</subject><subject>Software packages</subject><subject>Synthesis</subject><subject>Telecommunications</subject><subject>Telecommunications and information theory</subject><subject>TICRA software package</subject><issn>1751-8725</issn><issn>1751-8733</issn><issn>1751-8733</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkE1r20AQhkVpIGnSH5CboBSag5z90Gjl3lyTtIaEpJCcl9FqhBXklbIjU_zvs8LBhNKS0w7s877MPElyLsVMinx-2dKYbXCYKSH1TOSi-JCcSAMyK43WHw-zguPkE_OTEACgzUnye9kzOfRjxs9bDFSnA44jBZ_yzo9r4pbTDY3rvk6bPqRV6LGu0NcZr3GIdKCmIzfGr9hB3iOfJUcNdkyfX9_T5PH66mH5K7u5-7laLm4yB0LlGdSONKArq7xAkoXRhVDCzaHRSohSN1VeG6TSGV0qkBUWc1Sk5FyYyuWV1qfJt33vEPrnLfFoNy076jr01G_ZSgApQEE5oV_-Qp_6bfBxu0ip3ChZgomU3FMu9MzxMDuEdoNhZ6Wwk2QbJdso2U6S7SQ5Zr6-NiM77JqA3rV8CKpSAxSFitz3Pfen7Wj3frG9XS3Uj2shlMxj-GIfnrDD5qurB3u7uH-TGeomstk_2P8f8AJ5MKvo</recordid><startdate>201404</startdate><enddate>201404</enddate><creator>Dastranj, Ali Akbar</creator><creator>Abiri, Habibollah</creator><creator>Mallahzadeh, Ali Reza</creator><general>The Institution of Engineering and Technology</general><general>Institution of Engineering and Technology</general><general>The Institution of Engineering & Technology</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>S0W</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201404</creationdate><title>Cosecant-squared pattern synthesis method for broadband-shaped reflector antennas</title><author>Dastranj, Ali Akbar ; Abiri, Habibollah ; Mallahzadeh, Ali Reza</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5024-5dce35ac8b46ae16736020c95f320083fb4d7ae8c738251ba69a2e21907bc4b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>antenna radiation patterns</topic><topic>Antennas</topic><topic>Applied sciences</topic><topic>Bandwidth</topic><topic>bandwidth 18 GHz to 40 GHz</topic><topic>broadband antennas</topic><topic>broadband cosecant‐squared pattern reflector antennas</topic><topic>Computer simulation</topic><topic>cosecant‐squared pattern synthesis method</topic><topic>Exact sciences and technology</topic><topic>FEKO software package</topic><topic>frequency‐dependent fitness function</topic><topic>frequency‐dependent IWO method</topic><topic>geometrical optics</topic><topic>geometrical optics method</topic><topic>invasive weed optimisation algorithm</topic><topic>lower sidelobe level</topic><topic>optimisation</topic><topic>Optimization</topic><topic>optimum weighting values</topic><topic>Radiocommunications</topic><topic>Reflector antennas</topic><topic>reflector surface</topic><topic>reflector synthesis problems</topic><topic>Reflectors</topic><topic>Ripples</topic><topic>shaped region</topic><topic>Software packages</topic><topic>Synthesis</topic><topic>Telecommunications</topic><topic>Telecommunications and information theory</topic><topic>TICRA software package</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dastranj, Ali Akbar</creatorcontrib><creatorcontrib>Abiri, Habibollah</creatorcontrib><creatorcontrib>Mallahzadeh, Ali Reza</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>DELNET Engineering & Technology Collection</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IET microwaves, antennas & propagation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dastranj, Ali Akbar</au><au>Abiri, Habibollah</au><au>Mallahzadeh, Ali Reza</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cosecant-squared pattern synthesis method for broadband-shaped reflector antennas</atitle><jtitle>IET microwaves, antennas & propagation</jtitle><date>2014-04</date><risdate>2014</risdate><volume>8</volume><issue>5</issue><spage>328</spage><epage>336</epage><pages>328-336</pages><issn>1751-8725</issn><issn>1751-8733</issn><eissn>1751-8733</eissn><abstract>A new technique based on the invasive weed optimisation (IWO) algorithm and geometrical optics (GO) method for synthesising broadband cosecant-squared pattern reflector antennas is presented. The main feature that distinguishes this technique from others is the wide bandwidth. Moreover, compared with the previous methods, the proposed method allows to obtain extremely smaller ripples in the shaped region and lower sidelobe level (SLL). To achieve the desired performance over the entire 18–40 GHz operational bandwidth, the reflector surface is synthesised using a complex and accurate frequency-dependent fitness function including optimum weighting values. The simulation results via FEKO software package further prove the validity and versatility of this technique for solving reflector synthesis problems. In addition, experimental investigations are conducted to understand the complete reflector antenna system behaviours. Measurements show a good agreement with the simulation results. At last, the efficiency of the proposed frequency-dependent IWO (FDIWO) method both in bandwidth and optimality of the results are compared with original IWO method, common GO method and electromagnetic radiation (TICRA) software package. Comparison results show that the FDIWO method outperforms the other techniques.</abstract><cop>Stevenage</cop><pub>The Institution of Engineering and Technology</pub><doi>10.1049/iet-map.2013.0406</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1751-8725 |
ispartof | IET microwaves, antennas & propagation, 2014-04, Vol.8 (5), p.328-336 |
issn | 1751-8725 1751-8733 1751-8733 |
language | eng |
recordid | cdi_pascalfrancis_primary_28355662 |
source | Wiley Online Library (Open Access Collection) |
subjects | antenna radiation patterns Antennas Applied sciences Bandwidth bandwidth 18 GHz to 40 GHz broadband antennas broadband cosecant‐squared pattern reflector antennas Computer simulation cosecant‐squared pattern synthesis method Exact sciences and technology FEKO software package frequency‐dependent fitness function frequency‐dependent IWO method geometrical optics geometrical optics method invasive weed optimisation algorithm lower sidelobe level optimisation Optimization optimum weighting values Radiocommunications Reflector antennas reflector surface reflector synthesis problems Reflectors Ripples shaped region Software packages Synthesis Telecommunications Telecommunications and information theory TICRA software package |
title | Cosecant-squared pattern synthesis method for broadband-shaped reflector antennas |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T10%3A31%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cosecant-squared%20pattern%20synthesis%20method%20for%20broadband-shaped%20reflector%20antennas&rft.jtitle=IET%20microwaves,%20antennas%20&%20propagation&rft.au=Dastranj,%20Ali%20Akbar&rft.date=2014-04&rft.volume=8&rft.issue=5&rft.spage=328&rft.epage=336&rft.pages=328-336&rft.issn=1751-8725&rft.eissn=1751-8733&rft_id=info:doi/10.1049/iet-map.2013.0406&rft_dat=%3Cproquest_24P%3E3304483981%3C/proquest_24P%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1524721857&rft_id=info:pmid/&rfr_iscdi=true |