Cosecant-squared pattern synthesis method for broadband-shaped reflector antennas

A new technique based on the invasive weed optimisation (IWO) algorithm and geometrical optics (GO) method for synthesising broadband cosecant-squared pattern reflector antennas is presented. The main feature that distinguishes this technique from others is the wide bandwidth. Moreover, compared wit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IET microwaves, antennas & propagation antennas & propagation, 2014-04, Vol.8 (5), p.328-336
Hauptverfasser: Dastranj, Ali Akbar, Abiri, Habibollah, Mallahzadeh, Ali Reza
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 336
container_issue 5
container_start_page 328
container_title IET microwaves, antennas & propagation
container_volume 8
creator Dastranj, Ali Akbar
Abiri, Habibollah
Mallahzadeh, Ali Reza
description A new technique based on the invasive weed optimisation (IWO) algorithm and geometrical optics (GO) method for synthesising broadband cosecant-squared pattern reflector antennas is presented. The main feature that distinguishes this technique from others is the wide bandwidth. Moreover, compared with the previous methods, the proposed method allows to obtain extremely smaller ripples in the shaped region and lower sidelobe level (SLL). To achieve the desired performance over the entire 18–40 GHz operational bandwidth, the reflector surface is synthesised using a complex and accurate frequency-dependent fitness function including optimum weighting values. The simulation results via FEKO software package further prove the validity and versatility of this technique for solving reflector synthesis problems. In addition, experimental investigations are conducted to understand the complete reflector antenna system behaviours. Measurements show a good agreement with the simulation results. At last, the efficiency of the proposed frequency-dependent IWO (FDIWO) method both in bandwidth and optimality of the results are compared with original IWO method, common GO method and electromagnetic radiation (TICRA) software package. Comparison results show that the FDIWO method outperforms the other techniques.
doi_str_mv 10.1049/iet-map.2013.0406
format Article
fullrecord <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_pascalfrancis_primary_28355662</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3304483981</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5024-5dce35ac8b46ae16736020c95f320083fb4d7ae8c738251ba69a2e21907bc4b33</originalsourceid><addsrcrecordid>eNqFkE1r20AQhkVpIGnSH5CboBSag5z90Gjl3lyTtIaEpJCcl9FqhBXklbIjU_zvs8LBhNKS0w7s877MPElyLsVMinx-2dKYbXCYKSH1TOSi-JCcSAMyK43WHw-zguPkE_OTEACgzUnye9kzOfRjxs9bDFSnA44jBZ_yzo9r4pbTDY3rvk6bPqRV6LGu0NcZr3GIdKCmIzfGr9hB3iOfJUcNdkyfX9_T5PH66mH5K7u5-7laLm4yB0LlGdSONKArq7xAkoXRhVDCzaHRSohSN1VeG6TSGV0qkBUWc1Sk5FyYyuWV1qfJt33vEPrnLfFoNy076jr01G_ZSgApQEE5oV_-Qp_6bfBxu0ip3ChZgomU3FMu9MzxMDuEdoNhZ6Wwk2QbJdso2U6S7SQ5Zr6-NiM77JqA3rV8CKpSAxSFitz3Pfen7Wj3frG9XS3Uj2shlMxj-GIfnrDD5qurB3u7uH-TGeomstk_2P8f8AJ5MKvo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1524721857</pqid></control><display><type>article</type><title>Cosecant-squared pattern synthesis method for broadband-shaped reflector antennas</title><source>Wiley Online Library (Open Access Collection)</source><creator>Dastranj, Ali Akbar ; Abiri, Habibollah ; Mallahzadeh, Ali Reza</creator><creatorcontrib>Dastranj, Ali Akbar ; Abiri, Habibollah ; Mallahzadeh, Ali Reza</creatorcontrib><description>A new technique based on the invasive weed optimisation (IWO) algorithm and geometrical optics (GO) method for synthesising broadband cosecant-squared pattern reflector antennas is presented. The main feature that distinguishes this technique from others is the wide bandwidth. Moreover, compared with the previous methods, the proposed method allows to obtain extremely smaller ripples in the shaped region and lower sidelobe level (SLL). To achieve the desired performance over the entire 18–40 GHz operational bandwidth, the reflector surface is synthesised using a complex and accurate frequency-dependent fitness function including optimum weighting values. The simulation results via FEKO software package further prove the validity and versatility of this technique for solving reflector synthesis problems. In addition, experimental investigations are conducted to understand the complete reflector antenna system behaviours. Measurements show a good agreement with the simulation results. At last, the efficiency of the proposed frequency-dependent IWO (FDIWO) method both in bandwidth and optimality of the results are compared with original IWO method, common GO method and electromagnetic radiation (TICRA) software package. Comparison results show that the FDIWO method outperforms the other techniques.</description><identifier>ISSN: 1751-8725</identifier><identifier>ISSN: 1751-8733</identifier><identifier>EISSN: 1751-8733</identifier><identifier>DOI: 10.1049/iet-map.2013.0406</identifier><language>eng</language><publisher>Stevenage: The Institution of Engineering and Technology</publisher><subject>antenna radiation patterns ; Antennas ; Applied sciences ; Bandwidth ; bandwidth 18 GHz to 40 GHz ; broadband antennas ; broadband cosecant‐squared pattern reflector antennas ; Computer simulation ; cosecant‐squared pattern synthesis method ; Exact sciences and technology ; FEKO software package ; frequency‐dependent fitness function ; frequency‐dependent IWO method ; geometrical optics ; geometrical optics method ; invasive weed optimisation algorithm ; lower sidelobe level ; optimisation ; Optimization ; optimum weighting values ; Radiocommunications ; Reflector antennas ; reflector surface ; reflector synthesis problems ; Reflectors ; Ripples ; shaped region ; Software packages ; Synthesis ; Telecommunications ; Telecommunications and information theory ; TICRA software package</subject><ispartof>IET microwaves, antennas &amp; propagation, 2014-04, Vol.8 (5), p.328-336</ispartof><rights>The Institution of Engineering and Technology</rights><rights>2014 The Institution of Engineering and Technology</rights><rights>2015 INIST-CNRS</rights><rights>Copyright The Institution of Engineering &amp; Technology Apr 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5024-5dce35ac8b46ae16736020c95f320083fb4d7ae8c738251ba69a2e21907bc4b33</citedby><cites>FETCH-LOGICAL-c5024-5dce35ac8b46ae16736020c95f320083fb4d7ae8c738251ba69a2e21907bc4b33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1049%2Fiet-map.2013.0406$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1049%2Fiet-map.2013.0406$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,782,786,1419,11569,27931,27932,45581,45582,46059,46483</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1049%2Fiet-map.2013.0406$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28355662$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Dastranj, Ali Akbar</creatorcontrib><creatorcontrib>Abiri, Habibollah</creatorcontrib><creatorcontrib>Mallahzadeh, Ali Reza</creatorcontrib><title>Cosecant-squared pattern synthesis method for broadband-shaped reflector antennas</title><title>IET microwaves, antennas &amp; propagation</title><description>A new technique based on the invasive weed optimisation (IWO) algorithm and geometrical optics (GO) method for synthesising broadband cosecant-squared pattern reflector antennas is presented. The main feature that distinguishes this technique from others is the wide bandwidth. Moreover, compared with the previous methods, the proposed method allows to obtain extremely smaller ripples in the shaped region and lower sidelobe level (SLL). To achieve the desired performance over the entire 18–40 GHz operational bandwidth, the reflector surface is synthesised using a complex and accurate frequency-dependent fitness function including optimum weighting values. The simulation results via FEKO software package further prove the validity and versatility of this technique for solving reflector synthesis problems. In addition, experimental investigations are conducted to understand the complete reflector antenna system behaviours. Measurements show a good agreement with the simulation results. At last, the efficiency of the proposed frequency-dependent IWO (FDIWO) method both in bandwidth and optimality of the results are compared with original IWO method, common GO method and electromagnetic radiation (TICRA) software package. Comparison results show that the FDIWO method outperforms the other techniques.</description><subject>antenna radiation patterns</subject><subject>Antennas</subject><subject>Applied sciences</subject><subject>Bandwidth</subject><subject>bandwidth 18 GHz to 40 GHz</subject><subject>broadband antennas</subject><subject>broadband cosecant‐squared pattern reflector antennas</subject><subject>Computer simulation</subject><subject>cosecant‐squared pattern synthesis method</subject><subject>Exact sciences and technology</subject><subject>FEKO software package</subject><subject>frequency‐dependent fitness function</subject><subject>frequency‐dependent IWO method</subject><subject>geometrical optics</subject><subject>geometrical optics method</subject><subject>invasive weed optimisation algorithm</subject><subject>lower sidelobe level</subject><subject>optimisation</subject><subject>Optimization</subject><subject>optimum weighting values</subject><subject>Radiocommunications</subject><subject>Reflector antennas</subject><subject>reflector surface</subject><subject>reflector synthesis problems</subject><subject>Reflectors</subject><subject>Ripples</subject><subject>shaped region</subject><subject>Software packages</subject><subject>Synthesis</subject><subject>Telecommunications</subject><subject>Telecommunications and information theory</subject><subject>TICRA software package</subject><issn>1751-8725</issn><issn>1751-8733</issn><issn>1751-8733</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkE1r20AQhkVpIGnSH5CboBSag5z90Gjl3lyTtIaEpJCcl9FqhBXklbIjU_zvs8LBhNKS0w7s877MPElyLsVMinx-2dKYbXCYKSH1TOSi-JCcSAMyK43WHw-zguPkE_OTEACgzUnye9kzOfRjxs9bDFSnA44jBZ_yzo9r4pbTDY3rvk6bPqRV6LGu0NcZr3GIdKCmIzfGr9hB3iOfJUcNdkyfX9_T5PH66mH5K7u5-7laLm4yB0LlGdSONKArq7xAkoXRhVDCzaHRSohSN1VeG6TSGV0qkBUWc1Sk5FyYyuWV1qfJt33vEPrnLfFoNy076jr01G_ZSgApQEE5oV_-Qp_6bfBxu0ip3ChZgomU3FMu9MzxMDuEdoNhZ6Wwk2QbJdso2U6S7SQ5Zr6-NiM77JqA3rV8CKpSAxSFitz3Pfen7Wj3frG9XS3Uj2shlMxj-GIfnrDD5qurB3u7uH-TGeomstk_2P8f8AJ5MKvo</recordid><startdate>201404</startdate><enddate>201404</enddate><creator>Dastranj, Ali Akbar</creator><creator>Abiri, Habibollah</creator><creator>Mallahzadeh, Ali Reza</creator><general>The Institution of Engineering and Technology</general><general>Institution of Engineering and Technology</general><general>The Institution of Engineering &amp; Technology</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>S0W</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201404</creationdate><title>Cosecant-squared pattern synthesis method for broadband-shaped reflector antennas</title><author>Dastranj, Ali Akbar ; Abiri, Habibollah ; Mallahzadeh, Ali Reza</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5024-5dce35ac8b46ae16736020c95f320083fb4d7ae8c738251ba69a2e21907bc4b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>antenna radiation patterns</topic><topic>Antennas</topic><topic>Applied sciences</topic><topic>Bandwidth</topic><topic>bandwidth 18 GHz to 40 GHz</topic><topic>broadband antennas</topic><topic>broadband cosecant‐squared pattern reflector antennas</topic><topic>Computer simulation</topic><topic>cosecant‐squared pattern synthesis method</topic><topic>Exact sciences and technology</topic><topic>FEKO software package</topic><topic>frequency‐dependent fitness function</topic><topic>frequency‐dependent IWO method</topic><topic>geometrical optics</topic><topic>geometrical optics method</topic><topic>invasive weed optimisation algorithm</topic><topic>lower sidelobe level</topic><topic>optimisation</topic><topic>Optimization</topic><topic>optimum weighting values</topic><topic>Radiocommunications</topic><topic>Reflector antennas</topic><topic>reflector surface</topic><topic>reflector synthesis problems</topic><topic>Reflectors</topic><topic>Ripples</topic><topic>shaped region</topic><topic>Software packages</topic><topic>Synthesis</topic><topic>Telecommunications</topic><topic>Telecommunications and information theory</topic><topic>TICRA software package</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dastranj, Ali Akbar</creatorcontrib><creatorcontrib>Abiri, Habibollah</creatorcontrib><creatorcontrib>Mallahzadeh, Ali Reza</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>DELNET Engineering &amp; Technology Collection</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IET microwaves, antennas &amp; propagation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dastranj, Ali Akbar</au><au>Abiri, Habibollah</au><au>Mallahzadeh, Ali Reza</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cosecant-squared pattern synthesis method for broadband-shaped reflector antennas</atitle><jtitle>IET microwaves, antennas &amp; propagation</jtitle><date>2014-04</date><risdate>2014</risdate><volume>8</volume><issue>5</issue><spage>328</spage><epage>336</epage><pages>328-336</pages><issn>1751-8725</issn><issn>1751-8733</issn><eissn>1751-8733</eissn><abstract>A new technique based on the invasive weed optimisation (IWO) algorithm and geometrical optics (GO) method for synthesising broadband cosecant-squared pattern reflector antennas is presented. The main feature that distinguishes this technique from others is the wide bandwidth. Moreover, compared with the previous methods, the proposed method allows to obtain extremely smaller ripples in the shaped region and lower sidelobe level (SLL). To achieve the desired performance over the entire 18–40 GHz operational bandwidth, the reflector surface is synthesised using a complex and accurate frequency-dependent fitness function including optimum weighting values. The simulation results via FEKO software package further prove the validity and versatility of this technique for solving reflector synthesis problems. In addition, experimental investigations are conducted to understand the complete reflector antenna system behaviours. Measurements show a good agreement with the simulation results. At last, the efficiency of the proposed frequency-dependent IWO (FDIWO) method both in bandwidth and optimality of the results are compared with original IWO method, common GO method and electromagnetic radiation (TICRA) software package. Comparison results show that the FDIWO method outperforms the other techniques.</abstract><cop>Stevenage</cop><pub>The Institution of Engineering and Technology</pub><doi>10.1049/iet-map.2013.0406</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1751-8725
ispartof IET microwaves, antennas & propagation, 2014-04, Vol.8 (5), p.328-336
issn 1751-8725
1751-8733
1751-8733
language eng
recordid cdi_pascalfrancis_primary_28355662
source Wiley Online Library (Open Access Collection)
subjects antenna radiation patterns
Antennas
Applied sciences
Bandwidth
bandwidth 18 GHz to 40 GHz
broadband antennas
broadband cosecant‐squared pattern reflector antennas
Computer simulation
cosecant‐squared pattern synthesis method
Exact sciences and technology
FEKO software package
frequency‐dependent fitness function
frequency‐dependent IWO method
geometrical optics
geometrical optics method
invasive weed optimisation algorithm
lower sidelobe level
optimisation
Optimization
optimum weighting values
Radiocommunications
Reflector antennas
reflector surface
reflector synthesis problems
Reflectors
Ripples
shaped region
Software packages
Synthesis
Telecommunications
Telecommunications and information theory
TICRA software package
title Cosecant-squared pattern synthesis method for broadband-shaped reflector antennas
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T10%3A31%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cosecant-squared%20pattern%20synthesis%20method%20for%20broadband-shaped%20reflector%20antennas&rft.jtitle=IET%20microwaves,%20antennas%20&%20propagation&rft.au=Dastranj,%20Ali%20Akbar&rft.date=2014-04&rft.volume=8&rft.issue=5&rft.spage=328&rft.epage=336&rft.pages=328-336&rft.issn=1751-8725&rft.eissn=1751-8733&rft_id=info:doi/10.1049/iet-map.2013.0406&rft_dat=%3Cproquest_24P%3E3304483981%3C/proquest_24P%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1524721857&rft_id=info:pmid/&rfr_iscdi=true