The homology of special linear groups over polynomial rings
We study the homology of SL n ( F[ t, t −1]) by examining the action of the group on a suitable simplicial complex. The E 1-term of the resulting spectral sequence is computed and the differential, d 1, is calculated in some special cases to yield information about the low-dimensional homology group...
Gespeichert in:
Veröffentlicht in: | Annales scientifiques de l'École normale supérieure 1997, Vol.30 (3), p.385-416 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 416 |
---|---|
container_issue | 3 |
container_start_page | 385 |
container_title | Annales scientifiques de l'École normale supérieure |
container_volume | 30 |
creator | Knudson, Kevin P. |
description | We study the homology of
SL
n
(
F[
t, t
−1]) by examining the action of the group on a suitable simplicial complex. The
E
1-term of the resulting spectral sequence is computed and the differential,
d
1, is calculated in some special cases to yield information about the low-dimensional homology groups of
SL
n
(
F[
t,t
−1]). In particular, we show that if
F is an infinite field, then
H
2(
SL
n
(
F[
t, t
−1]), ℤ) =
K
2(
F[
t, t
−1]) for
n ≥ 3. We also prove an unstable analogue of homotopy invariance in algebraic
K-theory; namely, if
F is an infinite field, then the natural map
SL
n
(
F) →
SL
n
(
F[
t]) induces an isomorphism on integral homology for all
n ≥ 2.
Nous étudions l'homologie de
SL
n
(
F[
t,t
−1]) en examinant l'action de ce groupe sur un complexe simplicial adéquat. Le terme
E
1 de la suite spectrale associée est déterminé et la différentielle
d
1 est calculée dans certains cas, ce qui permet alors de comprendre l'homologie du groupe
SL
n
(
F[
t,t
−1]) en bas degré. En particulier, nous montrons que si
F est un corps infini, alors
H
2(
SL
n
(
F[
t,t
−1]),ℤ) =
K
2(
F[
t,t
−1]) pour
n ≥ 3. Nous prouvons aussi un analogue instable de l'invariance homotopique en
K-théorie algébrique: si
F est un corps infini alors la flèche naturelle
SL
n
(
F) →
SL
n
(
F[
t]) induit un isomorphisme en homologie entière pour
n ≥ 2. |
doi_str_mv | 10.1016/S0012-9593(97)89926-0 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_2832458</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0012959397899260</els_id><sourcerecordid>S0012959397899260</sourcerecordid><originalsourceid>FETCH-LOGICAL-e238t-f69c49f7e7a2fc347d99f571514a211d375863ca83bfc2d1d873e6dbef2824c63</originalsourceid><addsrcrecordid>eNo9kE1LAzEQQIMoWKs_QcjBgx5W87WbBA8ixS8oeLCeQ5pM2sh2syS10H_fbSvOZQ7zGB4PoWtK7imhzcMXIZRVutb8Vss7pTVrKnKCRlRJXjFa01M0-kfO0UUpP2QYJcQIPc6WgJdpldq02OIUcOnBRdviNnZgM17k9NsXnDaQcZ_abZdW-2uO3aJcorNg2wJXf3uMvl9fZpP3avr59jF5nlbAuFpXodFO6CBBWhYcF9JrHWo5eAnLKPVc1qrhzio-D4556gdtaPwcAlNMuIaP0c3xb2-Ls23ItnOxmD7Hlc1bwxRnolYD9nTEYHDZRMimuAidAx8zuLXxKRpKzD6ZOSQz-x5GS3NIZgjfAfFxX54</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The homology of special linear groups over polynomial rings</title><source>Alma/SFX Local Collection</source><source>NUMDAM</source><creator>Knudson, Kevin P.</creator><creatorcontrib>Knudson, Kevin P.</creatorcontrib><description>We study the homology of
SL
n
(
F[
t, t
−1]) by examining the action of the group on a suitable simplicial complex. The
E
1-term of the resulting spectral sequence is computed and the differential,
d
1, is calculated in some special cases to yield information about the low-dimensional homology groups of
SL
n
(
F[
t,t
−1]). In particular, we show that if
F is an infinite field, then
H
2(
SL
n
(
F[
t, t
−1]), ℤ) =
K
2(
F[
t, t
−1]) for
n ≥ 3. We also prove an unstable analogue of homotopy invariance in algebraic
K-theory; namely, if
F is an infinite field, then the natural map
SL
n
(
F) →
SL
n
(
F[
t]) induces an isomorphism on integral homology for all
n ≥ 2.
Nous étudions l'homologie de
SL
n
(
F[
t,t
−1]) en examinant l'action de ce groupe sur un complexe simplicial adéquat. Le terme
E
1 de la suite spectrale associée est déterminé et la différentielle
d
1 est calculée dans certains cas, ce qui permet alors de comprendre l'homologie du groupe
SL
n
(
F[
t,t
−1]) en bas degré. En particulier, nous montrons que si
F est un corps infini, alors
H
2(
SL
n
(
F[
t,t
−1]),ℤ) =
K
2(
F[
t,t
−1]) pour
n ≥ 3. Nous prouvons aussi un analogue instable de l'invariance homotopique en
K-théorie algébrique: si
F est un corps infini alors la flèche naturelle
SL
n
(
F) →
SL
n
(
F[
t]) induit un isomorphisme en homologie entière pour
n ≥ 2.</description><identifier>ISSN: 0012-9593</identifier><identifier>EISSN: 1873-2151</identifier><identifier>DOI: 10.1016/S0012-9593(97)89926-0</identifier><identifier>CODEN: ASENAH</identifier><language>eng</language><publisher>Paris: Elsevier Masson SAS</publisher><subject>Algebra ; Associative rings and algebras ; Exact sciences and technology ; K-theory ; Mathematics ; Sciences and techniques of general use</subject><ispartof>Annales scientifiques de l'École normale supérieure, 1997, Vol.30 (3), p.385-416</ispartof><rights>1997 Gauthier-Villars</rights><rights>1997 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2832458$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Knudson, Kevin P.</creatorcontrib><title>The homology of special linear groups over polynomial rings</title><title>Annales scientifiques de l'École normale supérieure</title><description>We study the homology of
SL
n
(
F[
t, t
−1]) by examining the action of the group on a suitable simplicial complex. The
E
1-term of the resulting spectral sequence is computed and the differential,
d
1, is calculated in some special cases to yield information about the low-dimensional homology groups of
SL
n
(
F[
t,t
−1]). In particular, we show that if
F is an infinite field, then
H
2(
SL
n
(
F[
t, t
−1]), ℤ) =
K
2(
F[
t, t
−1]) for
n ≥ 3. We also prove an unstable analogue of homotopy invariance in algebraic
K-theory; namely, if
F is an infinite field, then the natural map
SL
n
(
F) →
SL
n
(
F[
t]) induces an isomorphism on integral homology for all
n ≥ 2.
Nous étudions l'homologie de
SL
n
(
F[
t,t
−1]) en examinant l'action de ce groupe sur un complexe simplicial adéquat. Le terme
E
1 de la suite spectrale associée est déterminé et la différentielle
d
1 est calculée dans certains cas, ce qui permet alors de comprendre l'homologie du groupe
SL
n
(
F[
t,t
−1]) en bas degré. En particulier, nous montrons que si
F est un corps infini, alors
H
2(
SL
n
(
F[
t,t
−1]),ℤ) =
K
2(
F[
t,t
−1]) pour
n ≥ 3. Nous prouvons aussi un analogue instable de l'invariance homotopique en
K-théorie algébrique: si
F est un corps infini alors la flèche naturelle
SL
n
(
F) →
SL
n
(
F[
t]) induit un isomorphisme en homologie entière pour
n ≥ 2.</description><subject>Algebra</subject><subject>Associative rings and algebras</subject><subject>Exact sciences and technology</subject><subject>K-theory</subject><subject>Mathematics</subject><subject>Sciences and techniques of general use</subject><issn>0012-9593</issn><issn>1873-2151</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEQQIMoWKs_QcjBgx5W87WbBA8ixS8oeLCeQ5pM2sh2syS10H_fbSvOZQ7zGB4PoWtK7imhzcMXIZRVutb8Vss7pTVrKnKCRlRJXjFa01M0-kfO0UUpP2QYJcQIPc6WgJdpldq02OIUcOnBRdviNnZgM17k9NsXnDaQcZ_abZdW-2uO3aJcorNg2wJXf3uMvl9fZpP3avr59jF5nlbAuFpXodFO6CBBWhYcF9JrHWo5eAnLKPVc1qrhzio-D4556gdtaPwcAlNMuIaP0c3xb2-Ls23ItnOxmD7Hlc1bwxRnolYD9nTEYHDZRMimuAidAx8zuLXxKRpKzD6ZOSQz-x5GS3NIZgjfAfFxX54</recordid><startdate>1997</startdate><enddate>1997</enddate><creator>Knudson, Kevin P.</creator><general>Elsevier Masson SAS</general><general>Elsevier</general><scope>IQODW</scope></search><sort><creationdate>1997</creationdate><title>The homology of special linear groups over polynomial rings</title><author>Knudson, Kevin P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-e238t-f69c49f7e7a2fc347d99f571514a211d375863ca83bfc2d1d873e6dbef2824c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Algebra</topic><topic>Associative rings and algebras</topic><topic>Exact sciences and technology</topic><topic>K-theory</topic><topic>Mathematics</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Knudson, Kevin P.</creatorcontrib><collection>Pascal-Francis</collection><jtitle>Annales scientifiques de l'École normale supérieure</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Knudson, Kevin P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The homology of special linear groups over polynomial rings</atitle><jtitle>Annales scientifiques de l'École normale supérieure</jtitle><date>1997</date><risdate>1997</risdate><volume>30</volume><issue>3</issue><spage>385</spage><epage>416</epage><pages>385-416</pages><issn>0012-9593</issn><eissn>1873-2151</eissn><coden>ASENAH</coden><abstract>We study the homology of
SL
n
(
F[
t, t
−1]) by examining the action of the group on a suitable simplicial complex. The
E
1-term of the resulting spectral sequence is computed and the differential,
d
1, is calculated in some special cases to yield information about the low-dimensional homology groups of
SL
n
(
F[
t,t
−1]). In particular, we show that if
F is an infinite field, then
H
2(
SL
n
(
F[
t, t
−1]), ℤ) =
K
2(
F[
t, t
−1]) for
n ≥ 3. We also prove an unstable analogue of homotopy invariance in algebraic
K-theory; namely, if
F is an infinite field, then the natural map
SL
n
(
F) →
SL
n
(
F[
t]) induces an isomorphism on integral homology for all
n ≥ 2.
Nous étudions l'homologie de
SL
n
(
F[
t,t
−1]) en examinant l'action de ce groupe sur un complexe simplicial adéquat. Le terme
E
1 de la suite spectrale associée est déterminé et la différentielle
d
1 est calculée dans certains cas, ce qui permet alors de comprendre l'homologie du groupe
SL
n
(
F[
t,t
−1]) en bas degré. En particulier, nous montrons que si
F est un corps infini, alors
H
2(
SL
n
(
F[
t,t
−1]),ℤ) =
K
2(
F[
t,t
−1]) pour
n ≥ 3. Nous prouvons aussi un analogue instable de l'invariance homotopique en
K-théorie algébrique: si
F est un corps infini alors la flèche naturelle
SL
n
(
F) →
SL
n
(
F[
t]) induit un isomorphisme en homologie entière pour
n ≥ 2.</abstract><cop>Paris</cop><pub>Elsevier Masson SAS</pub><doi>10.1016/S0012-9593(97)89926-0</doi><tpages>32</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0012-9593 |
ispartof | Annales scientifiques de l'École normale supérieure, 1997, Vol.30 (3), p.385-416 |
issn | 0012-9593 1873-2151 |
language | eng |
recordid | cdi_pascalfrancis_primary_2832458 |
source | Alma/SFX Local Collection; NUMDAM |
subjects | Algebra Associative rings and algebras Exact sciences and technology K-theory Mathematics Sciences and techniques of general use |
title | The homology of special linear groups over polynomial rings |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T19%3A27%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20homology%20of%20special%20linear%20groups%20over%20polynomial%20rings&rft.jtitle=Annales%20scientifiques%20de%20l'%C3%89cole%20normale%20sup%C3%A9rieure&rft.au=Knudson,%20Kevin%20P.&rft.date=1997&rft.volume=30&rft.issue=3&rft.spage=385&rft.epage=416&rft.pages=385-416&rft.issn=0012-9593&rft.eissn=1873-2151&rft.coden=ASENAH&rft_id=info:doi/10.1016/S0012-9593(97)89926-0&rft_dat=%3Celsevier_pasca%3ES0012959397899260%3C/elsevier_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0012959397899260&rfr_iscdi=true |