The Autocorrelation Spectral Density for Doppler-Weather-Radar Signal Analysis

Time-domain autocovariance processing is widely accepted as a computationally efficient method to estimate the first three spectral moments of Doppler weather radar signals (i.e., mean signal power, mean Doppler velocity, and spectrum width). However, when signals with different frequency content (e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2014-01, Vol.52 (1), p.508-518
Hauptverfasser: Warde, David A., Torres, Sebastian M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 518
container_issue 1
container_start_page 508
container_title IEEE transactions on geoscience and remote sensing
container_volume 52
creator Warde, David A.
Torres, Sebastian M.
description Time-domain autocovariance processing is widely accepted as a computationally efficient method to estimate the first three spectral moments of Doppler weather radar signals (i.e., mean signal power, mean Doppler velocity, and spectrum width). However, when signals with different frequency content (e.g., ground clutter) contaminate the weather signal, spectral processing using the periodogram estimator of the power spectral density (PSD) is the preferred tool of analysis. After spectral processing (i.e., filtering), a PSD-based autocorrelation estimator is typically employed to produce unbiased estimates of the weather-signal spectral moments. However, the PSD does not convey explicit phase information, which has the potential to aid in the spectral analysis of radar signals. In this paper, the autocorrelation spectral density (ASD) is introduced for spectral analysis of weather-radar signals as a generalization of the classical PSD, and an ASD-based autocorrelation estimator is proposed to produce unbiased estimates of the weather-signal spectral moments. A significant advantage of the ASD over the PSD is that it provides explicit phase information that can be exploited to identify and remove certain types of contaminant signals. Thus, the ASD provides an alternative means for spectral analysis, which can lead to improved quality of meteorological data from weather radars.
doi_str_mv 10.1109/TGRS.2013.2241775
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_28203109</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6473884</ieee_id><sourcerecordid>3143250401</sourcerecordid><originalsourceid>FETCH-LOGICAL-c323t-69e5cd2d4024d0b955c9878f536c044be2ed44a02df413a1bf764d1d6c8241d83</originalsourceid><addsrcrecordid>eNo9kE9LAzEQxYMoWKsfQLwsiMetmfzb5FharUJRaCselzTJ2i3rZk22h357U1p6mXeY33vMPITuAY8AsHpezRbLEcFAR4QwKAp-gQbAucyxYOwSDTAokROpyDW6iXGLMTAOxQB9rDYuG-96b3wIrtF97dts2TnTB91kU9fGut9nlQ_Z1Hdd40L-7XS_SbrQVodsWf-0CRynsY91vEVXlW6iuzvpEH29vqwmb_n8c_Y-Gc9zQwntc6EcN5ZYhgmzeK04N0oWsuJUGMzY2hFnGdOY2IoB1bCuCsEsWGFk-s5KOkSPx9wu-L-di3259buQjoglMEGUEiAOFBwpE3yMwVVlF-pfHfYl4PJQW3morTzUVp5qS56nU7KORjdV0K2p49lIJME0ORP3cORq59x5LVhBpWT0H69fdV8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1462996168</pqid></control><display><type>article</type><title>The Autocorrelation Spectral Density for Doppler-Weather-Radar Signal Analysis</title><source>IEEE Electronic Library (IEL)</source><creator>Warde, David A. ; Torres, Sebastian M.</creator><creatorcontrib>Warde, David A. ; Torres, Sebastian M.</creatorcontrib><description>Time-domain autocovariance processing is widely accepted as a computationally efficient method to estimate the first three spectral moments of Doppler weather radar signals (i.e., mean signal power, mean Doppler velocity, and spectrum width). However, when signals with different frequency content (e.g., ground clutter) contaminate the weather signal, spectral processing using the periodogram estimator of the power spectral density (PSD) is the preferred tool of analysis. After spectral processing (i.e., filtering), a PSD-based autocorrelation estimator is typically employed to produce unbiased estimates of the weather-signal spectral moments. However, the PSD does not convey explicit phase information, which has the potential to aid in the spectral analysis of radar signals. In this paper, the autocorrelation spectral density (ASD) is introduced for spectral analysis of weather-radar signals as a generalization of the classical PSD, and an ASD-based autocorrelation estimator is proposed to produce unbiased estimates of the weather-signal spectral moments. A significant advantage of the ASD over the PSD is that it provides explicit phase information that can be exploited to identify and remove certain types of contaminant signals. Thus, the ASD provides an alternative means for spectral analysis, which can lead to improved quality of meteorological data from weather radars.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2013.2241775</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied geophysics ; Autocorrelation estimation ; autocorrelation spectral density (ASD) ; clutter filtering ; Correlation ; Doppler weather radar ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Internal geophysics ; Meteorological radar ; Meteorology ; Narrowband ; Radar systems ; signal processing ; Spectral analysis ; Variable speed drives</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2014-01, Vol.52 (1), p.508-518</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c323t-69e5cd2d4024d0b955c9878f536c044be2ed44a02df413a1bf764d1d6c8241d83</citedby><cites>FETCH-LOGICAL-c323t-69e5cd2d4024d0b955c9878f536c044be2ed44a02df413a1bf764d1d6c8241d83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6473884$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6473884$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28203109$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Warde, David A.</creatorcontrib><creatorcontrib>Torres, Sebastian M.</creatorcontrib><title>The Autocorrelation Spectral Density for Doppler-Weather-Radar Signal Analysis</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Time-domain autocovariance processing is widely accepted as a computationally efficient method to estimate the first three spectral moments of Doppler weather radar signals (i.e., mean signal power, mean Doppler velocity, and spectrum width). However, when signals with different frequency content (e.g., ground clutter) contaminate the weather signal, spectral processing using the periodogram estimator of the power spectral density (PSD) is the preferred tool of analysis. After spectral processing (i.e., filtering), a PSD-based autocorrelation estimator is typically employed to produce unbiased estimates of the weather-signal spectral moments. However, the PSD does not convey explicit phase information, which has the potential to aid in the spectral analysis of radar signals. In this paper, the autocorrelation spectral density (ASD) is introduced for spectral analysis of weather-radar signals as a generalization of the classical PSD, and an ASD-based autocorrelation estimator is proposed to produce unbiased estimates of the weather-signal spectral moments. A significant advantage of the ASD over the PSD is that it provides explicit phase information that can be exploited to identify and remove certain types of contaminant signals. Thus, the ASD provides an alternative means for spectral analysis, which can lead to improved quality of meteorological data from weather radars.</description><subject>Applied geophysics</subject><subject>Autocorrelation estimation</subject><subject>autocorrelation spectral density (ASD)</subject><subject>clutter filtering</subject><subject>Correlation</subject><subject>Doppler weather radar</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Internal geophysics</subject><subject>Meteorological radar</subject><subject>Meteorology</subject><subject>Narrowband</subject><subject>Radar systems</subject><subject>signal processing</subject><subject>Spectral analysis</subject><subject>Variable speed drives</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE9LAzEQxYMoWKsfQLwsiMetmfzb5FharUJRaCselzTJ2i3rZk22h357U1p6mXeY33vMPITuAY8AsHpezRbLEcFAR4QwKAp-gQbAucyxYOwSDTAokROpyDW6iXGLMTAOxQB9rDYuG-96b3wIrtF97dts2TnTB91kU9fGut9nlQ_Z1Hdd40L-7XS_SbrQVodsWf-0CRynsY91vEVXlW6iuzvpEH29vqwmb_n8c_Y-Gc9zQwntc6EcN5ZYhgmzeK04N0oWsuJUGMzY2hFnGdOY2IoB1bCuCsEsWGFk-s5KOkSPx9wu-L-di3259buQjoglMEGUEiAOFBwpE3yMwVVlF-pfHfYl4PJQW3morTzUVp5qS56nU7KORjdV0K2p49lIJME0ORP3cORq59x5LVhBpWT0H69fdV8</recordid><startdate>201401</startdate><enddate>201401</enddate><creator>Warde, David A.</creator><creator>Torres, Sebastian M.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope></search><sort><creationdate>201401</creationdate><title>The Autocorrelation Spectral Density for Doppler-Weather-Radar Signal Analysis</title><author>Warde, David A. ; Torres, Sebastian M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c323t-69e5cd2d4024d0b955c9878f536c044be2ed44a02df413a1bf764d1d6c8241d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied geophysics</topic><topic>Autocorrelation estimation</topic><topic>autocorrelation spectral density (ASD)</topic><topic>clutter filtering</topic><topic>Correlation</topic><topic>Doppler weather radar</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Internal geophysics</topic><topic>Meteorological radar</topic><topic>Meteorology</topic><topic>Narrowband</topic><topic>Radar systems</topic><topic>signal processing</topic><topic>Spectral analysis</topic><topic>Variable speed drives</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Warde, David A.</creatorcontrib><creatorcontrib>Torres, Sebastian M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Warde, David A.</au><au>Torres, Sebastian M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Autocorrelation Spectral Density for Doppler-Weather-Radar Signal Analysis</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2014-01</date><risdate>2014</risdate><volume>52</volume><issue>1</issue><spage>508</spage><epage>518</epage><pages>508-518</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Time-domain autocovariance processing is widely accepted as a computationally efficient method to estimate the first three spectral moments of Doppler weather radar signals (i.e., mean signal power, mean Doppler velocity, and spectrum width). However, when signals with different frequency content (e.g., ground clutter) contaminate the weather signal, spectral processing using the periodogram estimator of the power spectral density (PSD) is the preferred tool of analysis. After spectral processing (i.e., filtering), a PSD-based autocorrelation estimator is typically employed to produce unbiased estimates of the weather-signal spectral moments. However, the PSD does not convey explicit phase information, which has the potential to aid in the spectral analysis of radar signals. In this paper, the autocorrelation spectral density (ASD) is introduced for spectral analysis of weather-radar signals as a generalization of the classical PSD, and an ASD-based autocorrelation estimator is proposed to produce unbiased estimates of the weather-signal spectral moments. A significant advantage of the ASD over the PSD is that it provides explicit phase information that can be exploited to identify and remove certain types of contaminant signals. Thus, the ASD provides an alternative means for spectral analysis, which can lead to improved quality of meteorological data from weather radars.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TGRS.2013.2241775</doi><tpages>11</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2014-01, Vol.52 (1), p.508-518
issn 0196-2892
1558-0644
language eng
recordid cdi_pascalfrancis_primary_28203109
source IEEE Electronic Library (IEL)
subjects Applied geophysics
Autocorrelation estimation
autocorrelation spectral density (ASD)
clutter filtering
Correlation
Doppler weather radar
Earth sciences
Earth, ocean, space
Exact sciences and technology
Internal geophysics
Meteorological radar
Meteorology
Narrowband
Radar systems
signal processing
Spectral analysis
Variable speed drives
title The Autocorrelation Spectral Density for Doppler-Weather-Radar Signal Analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T23%3A45%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Autocorrelation%20Spectral%20Density%20for%20Doppler-Weather-Radar%20Signal%20Analysis&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Warde,%20David%20A.&rft.date=2014-01&rft.volume=52&rft.issue=1&rft.spage=508&rft.epage=518&rft.pages=508-518&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2013.2241775&rft_dat=%3Cproquest_RIE%3E3143250401%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1462996168&rft_id=info:pmid/&rft_ieee_id=6473884&rfr_iscdi=true