The Autocorrelation Spectral Density for Doppler-Weather-Radar Signal Analysis
Time-domain autocovariance processing is widely accepted as a computationally efficient method to estimate the first three spectral moments of Doppler weather radar signals (i.e., mean signal power, mean Doppler velocity, and spectrum width). However, when signals with different frequency content (e...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on geoscience and remote sensing 2014-01, Vol.52 (1), p.508-518 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 518 |
---|---|
container_issue | 1 |
container_start_page | 508 |
container_title | IEEE transactions on geoscience and remote sensing |
container_volume | 52 |
creator | Warde, David A. Torres, Sebastian M. |
description | Time-domain autocovariance processing is widely accepted as a computationally efficient method to estimate the first three spectral moments of Doppler weather radar signals (i.e., mean signal power, mean Doppler velocity, and spectrum width). However, when signals with different frequency content (e.g., ground clutter) contaminate the weather signal, spectral processing using the periodogram estimator of the power spectral density (PSD) is the preferred tool of analysis. After spectral processing (i.e., filtering), a PSD-based autocorrelation estimator is typically employed to produce unbiased estimates of the weather-signal spectral moments. However, the PSD does not convey explicit phase information, which has the potential to aid in the spectral analysis of radar signals. In this paper, the autocorrelation spectral density (ASD) is introduced for spectral analysis of weather-radar signals as a generalization of the classical PSD, and an ASD-based autocorrelation estimator is proposed to produce unbiased estimates of the weather-signal spectral moments. A significant advantage of the ASD over the PSD is that it provides explicit phase information that can be exploited to identify and remove certain types of contaminant signals. Thus, the ASD provides an alternative means for spectral analysis, which can lead to improved quality of meteorological data from weather radars. |
doi_str_mv | 10.1109/TGRS.2013.2241775 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_28203109</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6473884</ieee_id><sourcerecordid>3143250401</sourcerecordid><originalsourceid>FETCH-LOGICAL-c323t-69e5cd2d4024d0b955c9878f536c044be2ed44a02df413a1bf764d1d6c8241d83</originalsourceid><addsrcrecordid>eNo9kE9LAzEQxYMoWKsfQLwsiMetmfzb5FharUJRaCselzTJ2i3rZk22h357U1p6mXeY33vMPITuAY8AsHpezRbLEcFAR4QwKAp-gQbAucyxYOwSDTAokROpyDW6iXGLMTAOxQB9rDYuG-96b3wIrtF97dts2TnTB91kU9fGut9nlQ_Z1Hdd40L-7XS_SbrQVodsWf-0CRynsY91vEVXlW6iuzvpEH29vqwmb_n8c_Y-Gc9zQwntc6EcN5ZYhgmzeK04N0oWsuJUGMzY2hFnGdOY2IoB1bCuCsEsWGFk-s5KOkSPx9wu-L-di3259buQjoglMEGUEiAOFBwpE3yMwVVlF-pfHfYl4PJQW3morTzUVp5qS56nU7KORjdV0K2p49lIJME0ORP3cORq59x5LVhBpWT0H69fdV8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1462996168</pqid></control><display><type>article</type><title>The Autocorrelation Spectral Density for Doppler-Weather-Radar Signal Analysis</title><source>IEEE Electronic Library (IEL)</source><creator>Warde, David A. ; Torres, Sebastian M.</creator><creatorcontrib>Warde, David A. ; Torres, Sebastian M.</creatorcontrib><description>Time-domain autocovariance processing is widely accepted as a computationally efficient method to estimate the first three spectral moments of Doppler weather radar signals (i.e., mean signal power, mean Doppler velocity, and spectrum width). However, when signals with different frequency content (e.g., ground clutter) contaminate the weather signal, spectral processing using the periodogram estimator of the power spectral density (PSD) is the preferred tool of analysis. After spectral processing (i.e., filtering), a PSD-based autocorrelation estimator is typically employed to produce unbiased estimates of the weather-signal spectral moments. However, the PSD does not convey explicit phase information, which has the potential to aid in the spectral analysis of radar signals. In this paper, the autocorrelation spectral density (ASD) is introduced for spectral analysis of weather-radar signals as a generalization of the classical PSD, and an ASD-based autocorrelation estimator is proposed to produce unbiased estimates of the weather-signal spectral moments. A significant advantage of the ASD over the PSD is that it provides explicit phase information that can be exploited to identify and remove certain types of contaminant signals. Thus, the ASD provides an alternative means for spectral analysis, which can lead to improved quality of meteorological data from weather radars.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2013.2241775</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied geophysics ; Autocorrelation estimation ; autocorrelation spectral density (ASD) ; clutter filtering ; Correlation ; Doppler weather radar ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Internal geophysics ; Meteorological radar ; Meteorology ; Narrowband ; Radar systems ; signal processing ; Spectral analysis ; Variable speed drives</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2014-01, Vol.52 (1), p.508-518</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c323t-69e5cd2d4024d0b955c9878f536c044be2ed44a02df413a1bf764d1d6c8241d83</citedby><cites>FETCH-LOGICAL-c323t-69e5cd2d4024d0b955c9878f536c044be2ed44a02df413a1bf764d1d6c8241d83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6473884$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6473884$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28203109$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Warde, David A.</creatorcontrib><creatorcontrib>Torres, Sebastian M.</creatorcontrib><title>The Autocorrelation Spectral Density for Doppler-Weather-Radar Signal Analysis</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Time-domain autocovariance processing is widely accepted as a computationally efficient method to estimate the first three spectral moments of Doppler weather radar signals (i.e., mean signal power, mean Doppler velocity, and spectrum width). However, when signals with different frequency content (e.g., ground clutter) contaminate the weather signal, spectral processing using the periodogram estimator of the power spectral density (PSD) is the preferred tool of analysis. After spectral processing (i.e., filtering), a PSD-based autocorrelation estimator is typically employed to produce unbiased estimates of the weather-signal spectral moments. However, the PSD does not convey explicit phase information, which has the potential to aid in the spectral analysis of radar signals. In this paper, the autocorrelation spectral density (ASD) is introduced for spectral analysis of weather-radar signals as a generalization of the classical PSD, and an ASD-based autocorrelation estimator is proposed to produce unbiased estimates of the weather-signal spectral moments. A significant advantage of the ASD over the PSD is that it provides explicit phase information that can be exploited to identify and remove certain types of contaminant signals. Thus, the ASD provides an alternative means for spectral analysis, which can lead to improved quality of meteorological data from weather radars.</description><subject>Applied geophysics</subject><subject>Autocorrelation estimation</subject><subject>autocorrelation spectral density (ASD)</subject><subject>clutter filtering</subject><subject>Correlation</subject><subject>Doppler weather radar</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Internal geophysics</subject><subject>Meteorological radar</subject><subject>Meteorology</subject><subject>Narrowband</subject><subject>Radar systems</subject><subject>signal processing</subject><subject>Spectral analysis</subject><subject>Variable speed drives</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE9LAzEQxYMoWKsfQLwsiMetmfzb5FharUJRaCselzTJ2i3rZk22h357U1p6mXeY33vMPITuAY8AsHpezRbLEcFAR4QwKAp-gQbAucyxYOwSDTAokROpyDW6iXGLMTAOxQB9rDYuG-96b3wIrtF97dts2TnTB91kU9fGut9nlQ_Z1Hdd40L-7XS_SbrQVodsWf-0CRynsY91vEVXlW6iuzvpEH29vqwmb_n8c_Y-Gc9zQwntc6EcN5ZYhgmzeK04N0oWsuJUGMzY2hFnGdOY2IoB1bCuCsEsWGFk-s5KOkSPx9wu-L-di3259buQjoglMEGUEiAOFBwpE3yMwVVlF-pfHfYl4PJQW3morTzUVp5qS56nU7KORjdV0K2p49lIJME0ORP3cORq59x5LVhBpWT0H69fdV8</recordid><startdate>201401</startdate><enddate>201401</enddate><creator>Warde, David A.</creator><creator>Torres, Sebastian M.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope></search><sort><creationdate>201401</creationdate><title>The Autocorrelation Spectral Density for Doppler-Weather-Radar Signal Analysis</title><author>Warde, David A. ; Torres, Sebastian M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c323t-69e5cd2d4024d0b955c9878f536c044be2ed44a02df413a1bf764d1d6c8241d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied geophysics</topic><topic>Autocorrelation estimation</topic><topic>autocorrelation spectral density (ASD)</topic><topic>clutter filtering</topic><topic>Correlation</topic><topic>Doppler weather radar</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Internal geophysics</topic><topic>Meteorological radar</topic><topic>Meteorology</topic><topic>Narrowband</topic><topic>Radar systems</topic><topic>signal processing</topic><topic>Spectral analysis</topic><topic>Variable speed drives</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Warde, David A.</creatorcontrib><creatorcontrib>Torres, Sebastian M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Warde, David A.</au><au>Torres, Sebastian M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Autocorrelation Spectral Density for Doppler-Weather-Radar Signal Analysis</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2014-01</date><risdate>2014</risdate><volume>52</volume><issue>1</issue><spage>508</spage><epage>518</epage><pages>508-518</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Time-domain autocovariance processing is widely accepted as a computationally efficient method to estimate the first three spectral moments of Doppler weather radar signals (i.e., mean signal power, mean Doppler velocity, and spectrum width). However, when signals with different frequency content (e.g., ground clutter) contaminate the weather signal, spectral processing using the periodogram estimator of the power spectral density (PSD) is the preferred tool of analysis. After spectral processing (i.e., filtering), a PSD-based autocorrelation estimator is typically employed to produce unbiased estimates of the weather-signal spectral moments. However, the PSD does not convey explicit phase information, which has the potential to aid in the spectral analysis of radar signals. In this paper, the autocorrelation spectral density (ASD) is introduced for spectral analysis of weather-radar signals as a generalization of the classical PSD, and an ASD-based autocorrelation estimator is proposed to produce unbiased estimates of the weather-signal spectral moments. A significant advantage of the ASD over the PSD is that it provides explicit phase information that can be exploited to identify and remove certain types of contaminant signals. Thus, the ASD provides an alternative means for spectral analysis, which can lead to improved quality of meteorological data from weather radars.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TGRS.2013.2241775</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0196-2892 |
ispartof | IEEE transactions on geoscience and remote sensing, 2014-01, Vol.52 (1), p.508-518 |
issn | 0196-2892 1558-0644 |
language | eng |
recordid | cdi_pascalfrancis_primary_28203109 |
source | IEEE Electronic Library (IEL) |
subjects | Applied geophysics Autocorrelation estimation autocorrelation spectral density (ASD) clutter filtering Correlation Doppler weather radar Earth sciences Earth, ocean, space Exact sciences and technology Internal geophysics Meteorological radar Meteorology Narrowband Radar systems signal processing Spectral analysis Variable speed drives |
title | The Autocorrelation Spectral Density for Doppler-Weather-Radar Signal Analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T23%3A45%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Autocorrelation%20Spectral%20Density%20for%20Doppler-Weather-Radar%20Signal%20Analysis&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Warde,%20David%20A.&rft.date=2014-01&rft.volume=52&rft.issue=1&rft.spage=508&rft.epage=518&rft.pages=508-518&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2013.2241775&rft_dat=%3Cproquest_RIE%3E3143250401%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1462996168&rft_id=info:pmid/&rft_ieee_id=6473884&rfr_iscdi=true |