A Video Saliency Detection Model in Compressed Domain
Saliency detection is widely used to extract regions of interest in images for various image processing applications. Recently, many saliency detection models have been proposed for video in uncompressed (pixel) domain. However, video over Internet is always stored in compressed domains, such as MPE...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on circuits and systems for video technology 2014-01, Vol.24 (1), p.27-38 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 38 |
---|---|
container_issue | 1 |
container_start_page | 27 |
container_title | IEEE transactions on circuits and systems for video technology |
container_volume | 24 |
creator | YUMING FANG WEISI LIN ZHENZHONG CHEN TSAI, Chia-Ming LIN, Chia-Wen |
description | Saliency detection is widely used to extract regions of interest in images for various image processing applications. Recently, many saliency detection models have been proposed for video in uncompressed (pixel) domain. However, video over Internet is always stored in compressed domains, such as MPEG2, H.264, and MPEG4 Visual. In this paper, we propose a novel video saliency detection model based on feature contrast in compressed domain. Four types of features including luminance, color, texture, and motion are extracted from the discrete cosine transform coefficients and motion vectors in video bitstream. The static saliency map of unpredicted frames (I frames) is calculated on the basis of luminance, color, and texture features, while the motion saliency map of predicted frames (P and B frames) is computed by motion feature. A new fusion method is designed to combine the static saliency and motion saliency maps to get the final saliency map for each video frame. Due to the directly derived features in compressed domain, the proposed model can predict the salient regions efficiently for video frames. Experimental results on a public database show superior performance of the proposed video saliency detection model in compressed domain. |
doi_str_mv | 10.1109/TCSVT.2013.2273613 |
format | Article |
fullrecord | <record><control><sourceid>pascalfrancis_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_28149892</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6560380</ieee_id><sourcerecordid>28149892</sourcerecordid><originalsourceid>FETCH-LOGICAL-c341t-1eec930e061f68d262d03bdf3cc0ba9cebb7f05745bd34f1be367e3f0966ebce3</originalsourceid><addsrcrecordid>eNo9j8tqwzAQRUVpoWnaH2g32nTpdEayZHkZnL4gpYu42RpZGoGKYwcrm_x9kyZkNRfmnguHsUeEGSKUL3W1WtczAShnQhRSo7xiE1TKZEKAuj5kUJgZgeqW3aX0C4C5yYsJU3O-jp4GvrJdpN7t-YJ25HZx6PnX4KnjsefVsNmOlBJ5vhg2Nvb37CbYLtHD-U7Zz9trXX1ky-_3z2q-zJzMcZchkSslEGgM2nihhQfZ-iCdg9aWjtq2CKCKXLVe5gFbkrogGaDUmlpHcsrEadeNQ0ojhWY7xo0d9w1CcxRv_sWbo3hzFj9Azydoa5OzXRht72K6kMJgXppSHHpPp14kostbKw3SgPwDxH1hZg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Video Saliency Detection Model in Compressed Domain</title><source>IEEE Electronic Library (IEL)</source><creator>YUMING FANG ; WEISI LIN ; ZHENZHONG CHEN ; TSAI, Chia-Ming ; LIN, Chia-Wen</creator><creatorcontrib>YUMING FANG ; WEISI LIN ; ZHENZHONG CHEN ; TSAI, Chia-Ming ; LIN, Chia-Wen</creatorcontrib><description>Saliency detection is widely used to extract regions of interest in images for various image processing applications. Recently, many saliency detection models have been proposed for video in uncompressed (pixel) domain. However, video over Internet is always stored in compressed domains, such as MPEG2, H.264, and MPEG4 Visual. In this paper, we propose a novel video saliency detection model based on feature contrast in compressed domain. Four types of features including luminance, color, texture, and motion are extracted from the discrete cosine transform coefficients and motion vectors in video bitstream. The static saliency map of unpredicted frames (I frames) is calculated on the basis of luminance, color, and texture features, while the motion saliency map of predicted frames (P and B frames) is computed by motion feature. A new fusion method is designed to combine the static saliency and motion saliency maps to get the final saliency map for each video frame. Due to the directly derived features in compressed domain, the proposed model can predict the salient regions efficiently for video frames. Experimental results on a public database show superior performance of the proposed video saliency detection model in compressed domain.</description><identifier>ISSN: 1051-8215</identifier><identifier>EISSN: 1558-2205</identifier><identifier>DOI: 10.1109/TCSVT.2013.2273613</identifier><identifier>CODEN: ITCTEM</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Compressed domain ; Computational modeling ; Detection, estimation, filtering, equalization, prediction ; Discrete cosine transforms ; Exact sciences and technology ; Feature extraction ; Image coding ; Image color analysis ; Image processing ; Information, signal and communications theory ; Interconnected networks ; Networks and services in france and abroad ; Signal and communications theory ; Signal processing ; Signal, noise ; Telecommunications ; Telecommunications and information theory ; Teleprocessing networks. Isdn ; Vectors ; video saliency detection ; visual attention ; Visualization</subject><ispartof>IEEE transactions on circuits and systems for video technology, 2014-01, Vol.24 (1), p.27-38</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c341t-1eec930e061f68d262d03bdf3cc0ba9cebb7f05745bd34f1be367e3f0966ebce3</citedby><cites>FETCH-LOGICAL-c341t-1eec930e061f68d262d03bdf3cc0ba9cebb7f05745bd34f1be367e3f0966ebce3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6560380$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4010,27900,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6560380$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28149892$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>YUMING FANG</creatorcontrib><creatorcontrib>WEISI LIN</creatorcontrib><creatorcontrib>ZHENZHONG CHEN</creatorcontrib><creatorcontrib>TSAI, Chia-Ming</creatorcontrib><creatorcontrib>LIN, Chia-Wen</creatorcontrib><title>A Video Saliency Detection Model in Compressed Domain</title><title>IEEE transactions on circuits and systems for video technology</title><addtitle>TCSVT</addtitle><description>Saliency detection is widely used to extract regions of interest in images for various image processing applications. Recently, many saliency detection models have been proposed for video in uncompressed (pixel) domain. However, video over Internet is always stored in compressed domains, such as MPEG2, H.264, and MPEG4 Visual. In this paper, we propose a novel video saliency detection model based on feature contrast in compressed domain. Four types of features including luminance, color, texture, and motion are extracted from the discrete cosine transform coefficients and motion vectors in video bitstream. The static saliency map of unpredicted frames (I frames) is calculated on the basis of luminance, color, and texture features, while the motion saliency map of predicted frames (P and B frames) is computed by motion feature. A new fusion method is designed to combine the static saliency and motion saliency maps to get the final saliency map for each video frame. Due to the directly derived features in compressed domain, the proposed model can predict the salient regions efficiently for video frames. Experimental results on a public database show superior performance of the proposed video saliency detection model in compressed domain.</description><subject>Applied sciences</subject><subject>Compressed domain</subject><subject>Computational modeling</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Discrete cosine transforms</subject><subject>Exact sciences and technology</subject><subject>Feature extraction</subject><subject>Image coding</subject><subject>Image color analysis</subject><subject>Image processing</subject><subject>Information, signal and communications theory</subject><subject>Interconnected networks</subject><subject>Networks and services in france and abroad</subject><subject>Signal and communications theory</subject><subject>Signal processing</subject><subject>Signal, noise</subject><subject>Telecommunications</subject><subject>Telecommunications and information theory</subject><subject>Teleprocessing networks. Isdn</subject><subject>Vectors</subject><subject>video saliency detection</subject><subject>visual attention</subject><subject>Visualization</subject><issn>1051-8215</issn><issn>1558-2205</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9j8tqwzAQRUVpoWnaH2g32nTpdEayZHkZnL4gpYu42RpZGoGKYwcrm_x9kyZkNRfmnguHsUeEGSKUL3W1WtczAShnQhRSo7xiE1TKZEKAuj5kUJgZgeqW3aX0C4C5yYsJU3O-jp4GvrJdpN7t-YJ25HZx6PnX4KnjsefVsNmOlBJ5vhg2Nvb37CbYLtHD-U7Zz9trXX1ky-_3z2q-zJzMcZchkSslEGgM2nihhQfZ-iCdg9aWjtq2CKCKXLVe5gFbkrogGaDUmlpHcsrEadeNQ0ojhWY7xo0d9w1CcxRv_sWbo3hzFj9Azydoa5OzXRht72K6kMJgXppSHHpPp14kostbKw3SgPwDxH1hZg</recordid><startdate>201401</startdate><enddate>201401</enddate><creator>YUMING FANG</creator><creator>WEISI LIN</creator><creator>ZHENZHONG CHEN</creator><creator>TSAI, Chia-Ming</creator><creator>LIN, Chia-Wen</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201401</creationdate><title>A Video Saliency Detection Model in Compressed Domain</title><author>YUMING FANG ; WEISI LIN ; ZHENZHONG CHEN ; TSAI, Chia-Ming ; LIN, Chia-Wen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c341t-1eec930e061f68d262d03bdf3cc0ba9cebb7f05745bd34f1be367e3f0966ebce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied sciences</topic><topic>Compressed domain</topic><topic>Computational modeling</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Discrete cosine transforms</topic><topic>Exact sciences and technology</topic><topic>Feature extraction</topic><topic>Image coding</topic><topic>Image color analysis</topic><topic>Image processing</topic><topic>Information, signal and communications theory</topic><topic>Interconnected networks</topic><topic>Networks and services in france and abroad</topic><topic>Signal and communications theory</topic><topic>Signal processing</topic><topic>Signal, noise</topic><topic>Telecommunications</topic><topic>Telecommunications and information theory</topic><topic>Teleprocessing networks. Isdn</topic><topic>Vectors</topic><topic>video saliency detection</topic><topic>visual attention</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>YUMING FANG</creatorcontrib><creatorcontrib>WEISI LIN</creatorcontrib><creatorcontrib>ZHENZHONG CHEN</creatorcontrib><creatorcontrib>TSAI, Chia-Ming</creatorcontrib><creatorcontrib>LIN, Chia-Wen</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>IEEE transactions on circuits and systems for video technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>YUMING FANG</au><au>WEISI LIN</au><au>ZHENZHONG CHEN</au><au>TSAI, Chia-Ming</au><au>LIN, Chia-Wen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Video Saliency Detection Model in Compressed Domain</atitle><jtitle>IEEE transactions on circuits and systems for video technology</jtitle><stitle>TCSVT</stitle><date>2014-01</date><risdate>2014</risdate><volume>24</volume><issue>1</issue><spage>27</spage><epage>38</epage><pages>27-38</pages><issn>1051-8215</issn><eissn>1558-2205</eissn><coden>ITCTEM</coden><abstract>Saliency detection is widely used to extract regions of interest in images for various image processing applications. Recently, many saliency detection models have been proposed for video in uncompressed (pixel) domain. However, video over Internet is always stored in compressed domains, such as MPEG2, H.264, and MPEG4 Visual. In this paper, we propose a novel video saliency detection model based on feature contrast in compressed domain. Four types of features including luminance, color, texture, and motion are extracted from the discrete cosine transform coefficients and motion vectors in video bitstream. The static saliency map of unpredicted frames (I frames) is calculated on the basis of luminance, color, and texture features, while the motion saliency map of predicted frames (P and B frames) is computed by motion feature. A new fusion method is designed to combine the static saliency and motion saliency maps to get the final saliency map for each video frame. Due to the directly derived features in compressed domain, the proposed model can predict the salient regions efficiently for video frames. Experimental results on a public database show superior performance of the proposed video saliency detection model in compressed domain.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TCSVT.2013.2273613</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1051-8215 |
ispartof | IEEE transactions on circuits and systems for video technology, 2014-01, Vol.24 (1), p.27-38 |
issn | 1051-8215 1558-2205 |
language | eng |
recordid | cdi_pascalfrancis_primary_28149892 |
source | IEEE Electronic Library (IEL) |
subjects | Applied sciences Compressed domain Computational modeling Detection, estimation, filtering, equalization, prediction Discrete cosine transforms Exact sciences and technology Feature extraction Image coding Image color analysis Image processing Information, signal and communications theory Interconnected networks Networks and services in france and abroad Signal and communications theory Signal processing Signal, noise Telecommunications Telecommunications and information theory Teleprocessing networks. Isdn Vectors video saliency detection visual attention Visualization |
title | A Video Saliency Detection Model in Compressed Domain |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T07%3A16%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Video%20Saliency%20Detection%20Model%20in%20Compressed%20Domain&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems%20for%20video%20technology&rft.au=YUMING%20FANG&rft.date=2014-01&rft.volume=24&rft.issue=1&rft.spage=27&rft.epage=38&rft.pages=27-38&rft.issn=1051-8215&rft.eissn=1558-2205&rft.coden=ITCTEM&rft_id=info:doi/10.1109/TCSVT.2013.2273613&rft_dat=%3Cpascalfrancis_RIE%3E28149892%3C/pascalfrancis_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6560380&rfr_iscdi=true |