A Video Saliency Detection Model in Compressed Domain

Saliency detection is widely used to extract regions of interest in images for various image processing applications. Recently, many saliency detection models have been proposed for video in uncompressed (pixel) domain. However, video over Internet is always stored in compressed domains, such as MPE...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems for video technology 2014-01, Vol.24 (1), p.27-38
Hauptverfasser: YUMING FANG, WEISI LIN, ZHENZHONG CHEN, TSAI, Chia-Ming, LIN, Chia-Wen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 38
container_issue 1
container_start_page 27
container_title IEEE transactions on circuits and systems for video technology
container_volume 24
creator YUMING FANG
WEISI LIN
ZHENZHONG CHEN
TSAI, Chia-Ming
LIN, Chia-Wen
description Saliency detection is widely used to extract regions of interest in images for various image processing applications. Recently, many saliency detection models have been proposed for video in uncompressed (pixel) domain. However, video over Internet is always stored in compressed domains, such as MPEG2, H.264, and MPEG4 Visual. In this paper, we propose a novel video saliency detection model based on feature contrast in compressed domain. Four types of features including luminance, color, texture, and motion are extracted from the discrete cosine transform coefficients and motion vectors in video bitstream. The static saliency map of unpredicted frames (I frames) is calculated on the basis of luminance, color, and texture features, while the motion saliency map of predicted frames (P and B frames) is computed by motion feature. A new fusion method is designed to combine the static saliency and motion saliency maps to get the final saliency map for each video frame. Due to the directly derived features in compressed domain, the proposed model can predict the salient regions efficiently for video frames. Experimental results on a public database show superior performance of the proposed video saliency detection model in compressed domain.
doi_str_mv 10.1109/TCSVT.2013.2273613
format Article
fullrecord <record><control><sourceid>pascalfrancis_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_28149892</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6560380</ieee_id><sourcerecordid>28149892</sourcerecordid><originalsourceid>FETCH-LOGICAL-c341t-1eec930e061f68d262d03bdf3cc0ba9cebb7f05745bd34f1be367e3f0966ebce3</originalsourceid><addsrcrecordid>eNo9j8tqwzAQRUVpoWnaH2g32nTpdEayZHkZnL4gpYu42RpZGoGKYwcrm_x9kyZkNRfmnguHsUeEGSKUL3W1WtczAShnQhRSo7xiE1TKZEKAuj5kUJgZgeqW3aX0C4C5yYsJU3O-jp4GvrJdpN7t-YJ25HZx6PnX4KnjsefVsNmOlBJ5vhg2Nvb37CbYLtHD-U7Zz9trXX1ky-_3z2q-zJzMcZchkSslEGgM2nihhQfZ-iCdg9aWjtq2CKCKXLVe5gFbkrogGaDUmlpHcsrEadeNQ0ojhWY7xo0d9w1CcxRv_sWbo3hzFj9Azydoa5OzXRht72K6kMJgXppSHHpPp14kostbKw3SgPwDxH1hZg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Video Saliency Detection Model in Compressed Domain</title><source>IEEE Electronic Library (IEL)</source><creator>YUMING FANG ; WEISI LIN ; ZHENZHONG CHEN ; TSAI, Chia-Ming ; LIN, Chia-Wen</creator><creatorcontrib>YUMING FANG ; WEISI LIN ; ZHENZHONG CHEN ; TSAI, Chia-Ming ; LIN, Chia-Wen</creatorcontrib><description>Saliency detection is widely used to extract regions of interest in images for various image processing applications. Recently, many saliency detection models have been proposed for video in uncompressed (pixel) domain. However, video over Internet is always stored in compressed domains, such as MPEG2, H.264, and MPEG4 Visual. In this paper, we propose a novel video saliency detection model based on feature contrast in compressed domain. Four types of features including luminance, color, texture, and motion are extracted from the discrete cosine transform coefficients and motion vectors in video bitstream. The static saliency map of unpredicted frames (I frames) is calculated on the basis of luminance, color, and texture features, while the motion saliency map of predicted frames (P and B frames) is computed by motion feature. A new fusion method is designed to combine the static saliency and motion saliency maps to get the final saliency map for each video frame. Due to the directly derived features in compressed domain, the proposed model can predict the salient regions efficiently for video frames. Experimental results on a public database show superior performance of the proposed video saliency detection model in compressed domain.</description><identifier>ISSN: 1051-8215</identifier><identifier>EISSN: 1558-2205</identifier><identifier>DOI: 10.1109/TCSVT.2013.2273613</identifier><identifier>CODEN: ITCTEM</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Compressed domain ; Computational modeling ; Detection, estimation, filtering, equalization, prediction ; Discrete cosine transforms ; Exact sciences and technology ; Feature extraction ; Image coding ; Image color analysis ; Image processing ; Information, signal and communications theory ; Interconnected networks ; Networks and services in france and abroad ; Signal and communications theory ; Signal processing ; Signal, noise ; Telecommunications ; Telecommunications and information theory ; Teleprocessing networks. Isdn ; Vectors ; video saliency detection ; visual attention ; Visualization</subject><ispartof>IEEE transactions on circuits and systems for video technology, 2014-01, Vol.24 (1), p.27-38</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c341t-1eec930e061f68d262d03bdf3cc0ba9cebb7f05745bd34f1be367e3f0966ebce3</citedby><cites>FETCH-LOGICAL-c341t-1eec930e061f68d262d03bdf3cc0ba9cebb7f05745bd34f1be367e3f0966ebce3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6560380$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4010,27900,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6560380$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28149892$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>YUMING FANG</creatorcontrib><creatorcontrib>WEISI LIN</creatorcontrib><creatorcontrib>ZHENZHONG CHEN</creatorcontrib><creatorcontrib>TSAI, Chia-Ming</creatorcontrib><creatorcontrib>LIN, Chia-Wen</creatorcontrib><title>A Video Saliency Detection Model in Compressed Domain</title><title>IEEE transactions on circuits and systems for video technology</title><addtitle>TCSVT</addtitle><description>Saliency detection is widely used to extract regions of interest in images for various image processing applications. Recently, many saliency detection models have been proposed for video in uncompressed (pixel) domain. However, video over Internet is always stored in compressed domains, such as MPEG2, H.264, and MPEG4 Visual. In this paper, we propose a novel video saliency detection model based on feature contrast in compressed domain. Four types of features including luminance, color, texture, and motion are extracted from the discrete cosine transform coefficients and motion vectors in video bitstream. The static saliency map of unpredicted frames (I frames) is calculated on the basis of luminance, color, and texture features, while the motion saliency map of predicted frames (P and B frames) is computed by motion feature. A new fusion method is designed to combine the static saliency and motion saliency maps to get the final saliency map for each video frame. Due to the directly derived features in compressed domain, the proposed model can predict the salient regions efficiently for video frames. Experimental results on a public database show superior performance of the proposed video saliency detection model in compressed domain.</description><subject>Applied sciences</subject><subject>Compressed domain</subject><subject>Computational modeling</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Discrete cosine transforms</subject><subject>Exact sciences and technology</subject><subject>Feature extraction</subject><subject>Image coding</subject><subject>Image color analysis</subject><subject>Image processing</subject><subject>Information, signal and communications theory</subject><subject>Interconnected networks</subject><subject>Networks and services in france and abroad</subject><subject>Signal and communications theory</subject><subject>Signal processing</subject><subject>Signal, noise</subject><subject>Telecommunications</subject><subject>Telecommunications and information theory</subject><subject>Teleprocessing networks. Isdn</subject><subject>Vectors</subject><subject>video saliency detection</subject><subject>visual attention</subject><subject>Visualization</subject><issn>1051-8215</issn><issn>1558-2205</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9j8tqwzAQRUVpoWnaH2g32nTpdEayZHkZnL4gpYu42RpZGoGKYwcrm_x9kyZkNRfmnguHsUeEGSKUL3W1WtczAShnQhRSo7xiE1TKZEKAuj5kUJgZgeqW3aX0C4C5yYsJU3O-jp4GvrJdpN7t-YJ25HZx6PnX4KnjsefVsNmOlBJ5vhg2Nvb37CbYLtHD-U7Zz9trXX1ky-_3z2q-zJzMcZchkSslEGgM2nihhQfZ-iCdg9aWjtq2CKCKXLVe5gFbkrogGaDUmlpHcsrEadeNQ0ojhWY7xo0d9w1CcxRv_sWbo3hzFj9Azydoa5OzXRht72K6kMJgXppSHHpPp14kostbKw3SgPwDxH1hZg</recordid><startdate>201401</startdate><enddate>201401</enddate><creator>YUMING FANG</creator><creator>WEISI LIN</creator><creator>ZHENZHONG CHEN</creator><creator>TSAI, Chia-Ming</creator><creator>LIN, Chia-Wen</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201401</creationdate><title>A Video Saliency Detection Model in Compressed Domain</title><author>YUMING FANG ; WEISI LIN ; ZHENZHONG CHEN ; TSAI, Chia-Ming ; LIN, Chia-Wen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c341t-1eec930e061f68d262d03bdf3cc0ba9cebb7f05745bd34f1be367e3f0966ebce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied sciences</topic><topic>Compressed domain</topic><topic>Computational modeling</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Discrete cosine transforms</topic><topic>Exact sciences and technology</topic><topic>Feature extraction</topic><topic>Image coding</topic><topic>Image color analysis</topic><topic>Image processing</topic><topic>Information, signal and communications theory</topic><topic>Interconnected networks</topic><topic>Networks and services in france and abroad</topic><topic>Signal and communications theory</topic><topic>Signal processing</topic><topic>Signal, noise</topic><topic>Telecommunications</topic><topic>Telecommunications and information theory</topic><topic>Teleprocessing networks. Isdn</topic><topic>Vectors</topic><topic>video saliency detection</topic><topic>visual attention</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>YUMING FANG</creatorcontrib><creatorcontrib>WEISI LIN</creatorcontrib><creatorcontrib>ZHENZHONG CHEN</creatorcontrib><creatorcontrib>TSAI, Chia-Ming</creatorcontrib><creatorcontrib>LIN, Chia-Wen</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>IEEE transactions on circuits and systems for video technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>YUMING FANG</au><au>WEISI LIN</au><au>ZHENZHONG CHEN</au><au>TSAI, Chia-Ming</au><au>LIN, Chia-Wen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Video Saliency Detection Model in Compressed Domain</atitle><jtitle>IEEE transactions on circuits and systems for video technology</jtitle><stitle>TCSVT</stitle><date>2014-01</date><risdate>2014</risdate><volume>24</volume><issue>1</issue><spage>27</spage><epage>38</epage><pages>27-38</pages><issn>1051-8215</issn><eissn>1558-2205</eissn><coden>ITCTEM</coden><abstract>Saliency detection is widely used to extract regions of interest in images for various image processing applications. Recently, many saliency detection models have been proposed for video in uncompressed (pixel) domain. However, video over Internet is always stored in compressed domains, such as MPEG2, H.264, and MPEG4 Visual. In this paper, we propose a novel video saliency detection model based on feature contrast in compressed domain. Four types of features including luminance, color, texture, and motion are extracted from the discrete cosine transform coefficients and motion vectors in video bitstream. The static saliency map of unpredicted frames (I frames) is calculated on the basis of luminance, color, and texture features, while the motion saliency map of predicted frames (P and B frames) is computed by motion feature. A new fusion method is designed to combine the static saliency and motion saliency maps to get the final saliency map for each video frame. Due to the directly derived features in compressed domain, the proposed model can predict the salient regions efficiently for video frames. Experimental results on a public database show superior performance of the proposed video saliency detection model in compressed domain.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TCSVT.2013.2273613</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-8215
ispartof IEEE transactions on circuits and systems for video technology, 2014-01, Vol.24 (1), p.27-38
issn 1051-8215
1558-2205
language eng
recordid cdi_pascalfrancis_primary_28149892
source IEEE Electronic Library (IEL)
subjects Applied sciences
Compressed domain
Computational modeling
Detection, estimation, filtering, equalization, prediction
Discrete cosine transforms
Exact sciences and technology
Feature extraction
Image coding
Image color analysis
Image processing
Information, signal and communications theory
Interconnected networks
Networks and services in france and abroad
Signal and communications theory
Signal processing
Signal, noise
Telecommunications
Telecommunications and information theory
Teleprocessing networks. Isdn
Vectors
video saliency detection
visual attention
Visualization
title A Video Saliency Detection Model in Compressed Domain
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T07%3A16%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Video%20Saliency%20Detection%20Model%20in%20Compressed%20Domain&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems%20for%20video%20technology&rft.au=YUMING%20FANG&rft.date=2014-01&rft.volume=24&rft.issue=1&rft.spage=27&rft.epage=38&rft.pages=27-38&rft.issn=1051-8215&rft.eissn=1558-2205&rft.coden=ITCTEM&rft_id=info:doi/10.1109/TCSVT.2013.2273613&rft_dat=%3Cpascalfrancis_RIE%3E28149892%3C/pascalfrancis_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6560380&rfr_iscdi=true