Fabrication of a two-dimensional piezoelectric micromachined ultrasonic transducer array using a top-crossover-to-bottom structure and metal bridge connections

A new design methodology and fabrication process for two-dimensional (2D) piezoelectric micromachined ultrasonic transducer (pMUT) arrays using a top-crossover-to-bottom (TCTB) structure was developed. Individual sensing and actuation of pMUT elements from a small number of connection lines was enab...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of micromechanics and microengineering 2013-12, Vol.23 (12), p.125037-9
Hauptverfasser: Jung, Joontaek, Kim, Sangwon, Lee, Wonjun, Choi, Hongsoo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9
container_issue 12
container_start_page 125037
container_title Journal of micromechanics and microengineering
container_volume 23
creator Jung, Joontaek
Kim, Sangwon
Lee, Wonjun
Choi, Hongsoo
description A new design methodology and fabrication process for two-dimensional (2D) piezoelectric micromachined ultrasonic transducer (pMUT) arrays using a top-crossover-to-bottom (TCTB) structure was developed. Individual sensing and actuation of pMUT elements from a small number of connection lines was enabled by the TCTB structure, and the parasitic coupling capacitance of the array was significantly reduced as a result. A 32 × 32 pMUT array with a TCTB structure was fabricated, resulting in 64 connection lines over an area of 4.8 × 4.8 mm2. The top electrodes for each pMUT element were re-connected by metal bridging after bottom-electrode etching caused them to become disconnected. A deep reactive ion etching process was used to compactify the array. Each pMUT element was a circular-shaped K31-type ultrasonic transducer using a 1 µm thick sol-gel lead zirconate titanate (PZT: Pb1.10 Zr0.52 Ti0.48) thin film. To characterize a single element in the 2D pMUT array, the resonant frequency and coupling coefficient of 20 pMUT elements were averaged to 3.85 MHz and 0.0112, respectively. The maximum measured ultrasound intensity in water, measured at a distance of 4 mm, was 4.6 µW cm−2 from a single pMUT element driven by a 5 Vpp sine wave at 2.22 MHz. Potential applications for development of a TCTB-arranged 2D pMUT array include ultrasonic medical imaging, ultrasonic communication, ultrasonic range-finding and handwriting input systems.
doi_str_mv 10.1088/0960-1317/23/12/125037
format Article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_28046532</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1677975412</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-d3f255656542936a87dd4b9efafc445289f6c6d5b4d1378fb71c4f9371df6e223</originalsourceid><addsrcrecordid>eNqFUctqHSEYltJAT076CsVNoBt7vI3OLENokkKgm2QtjpfEMKNTdVqSl-mrxukJ2RYFf_S7-H8_AF8I_kZw3x_wIDAijMgDZQdC2-4wkx_AjjBBkOBs-Ah276BP4LSUJ4wJ6Um_A3-v9JiD0TWkCJOHGtY_Cdkwu1jalZ7gEtxLcpMzteHgHExOszaPIToL16lmXVJsD62Ixa7GZahz1s9wLSE-bHppQY1TSvrtMqoJjanWNMNS82rqmh3U0cLZ1ebVvmIfHDQpxubX_MsZOPF6Ku7z27kH91ff7y5v0O3P6x-XF7fItCYrsszTrhNtcTowoXtpLR8H57U3nHe0H7wwwnYjt4TJ3o-SGO4HJon1wlHK9uDrUXfJ6dfqSlVzKMZNk44urUURIeUgO042qDhC_3WVnVdLDrPOz4pgtU1EbWGrLWxFmSJUHSfSiOdvHroYPfmWmAnlnU17zEXHNgN6xIW0qKe05jaG8j_xV80Vnvw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1677975412</pqid></control><display><type>article</type><title>Fabrication of a two-dimensional piezoelectric micromachined ultrasonic transducer array using a top-crossover-to-bottom structure and metal bridge connections</title><source>Institute of Physics Journals</source><creator>Jung, Joontaek ; Kim, Sangwon ; Lee, Wonjun ; Choi, Hongsoo</creator><creatorcontrib>Jung, Joontaek ; Kim, Sangwon ; Lee, Wonjun ; Choi, Hongsoo</creatorcontrib><description>A new design methodology and fabrication process for two-dimensional (2D) piezoelectric micromachined ultrasonic transducer (pMUT) arrays using a top-crossover-to-bottom (TCTB) structure was developed. Individual sensing and actuation of pMUT elements from a small number of connection lines was enabled by the TCTB structure, and the parasitic coupling capacitance of the array was significantly reduced as a result. A 32 × 32 pMUT array with a TCTB structure was fabricated, resulting in 64 connection lines over an area of 4.8 × 4.8 mm2. The top electrodes for each pMUT element were re-connected by metal bridging after bottom-electrode etching caused them to become disconnected. A deep reactive ion etching process was used to compactify the array. Each pMUT element was a circular-shaped K31-type ultrasonic transducer using a 1 µm thick sol-gel lead zirconate titanate (PZT: Pb1.10 Zr0.52 Ti0.48) thin film. To characterize a single element in the 2D pMUT array, the resonant frequency and coupling coefficient of 20 pMUT elements were averaged to 3.85 MHz and 0.0112, respectively. The maximum measured ultrasound intensity in water, measured at a distance of 4 mm, was 4.6 µW cm−2 from a single pMUT element driven by a 5 Vpp sine wave at 2.22 MHz. Potential applications for development of a TCTB-arranged 2D pMUT array include ultrasonic medical imaging, ultrasonic communication, ultrasonic range-finding and handwriting input systems.</description><identifier>ISSN: 0960-1317</identifier><identifier>EISSN: 1361-6439</identifier><identifier>DOI: 10.1088/0960-1317/23/12/125037</identifier><identifier>CODEN: JMMIEZ</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Acoustical measurements and instrumentation ; Acoustics ; Arrays ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Joints ; Lead zirconate titanates ; MEMS ; Micromechanics ; Physics ; piezoelectric micro machined ultrasonic transducer ; Piezoelectricity ; PZT ; resonant frequency ; Transducers ; Two dimensional ; Ultrasonic testing ; ultrasound intensity</subject><ispartof>Journal of micromechanics and microengineering, 2013-12, Vol.23 (12), p.125037-9</ispartof><rights>2013 IOP Publishing Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-d3f255656542936a87dd4b9efafc445289f6c6d5b4d1378fb71c4f9371df6e223</citedby><cites>FETCH-LOGICAL-c361t-d3f255656542936a87dd4b9efafc445289f6c6d5b4d1378fb71c4f9371df6e223</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/0960-1317/23/12/125037/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,53821,53868</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28046532$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Jung, Joontaek</creatorcontrib><creatorcontrib>Kim, Sangwon</creatorcontrib><creatorcontrib>Lee, Wonjun</creatorcontrib><creatorcontrib>Choi, Hongsoo</creatorcontrib><title>Fabrication of a two-dimensional piezoelectric micromachined ultrasonic transducer array using a top-crossover-to-bottom structure and metal bridge connections</title><title>Journal of micromechanics and microengineering</title><addtitle>JMM</addtitle><addtitle>J. Micromech. Microeng</addtitle><description>A new design methodology and fabrication process for two-dimensional (2D) piezoelectric micromachined ultrasonic transducer (pMUT) arrays using a top-crossover-to-bottom (TCTB) structure was developed. Individual sensing and actuation of pMUT elements from a small number of connection lines was enabled by the TCTB structure, and the parasitic coupling capacitance of the array was significantly reduced as a result. A 32 × 32 pMUT array with a TCTB structure was fabricated, resulting in 64 connection lines over an area of 4.8 × 4.8 mm2. The top electrodes for each pMUT element were re-connected by metal bridging after bottom-electrode etching caused them to become disconnected. A deep reactive ion etching process was used to compactify the array. Each pMUT element was a circular-shaped K31-type ultrasonic transducer using a 1 µm thick sol-gel lead zirconate titanate (PZT: Pb1.10 Zr0.52 Ti0.48) thin film. To characterize a single element in the 2D pMUT array, the resonant frequency and coupling coefficient of 20 pMUT elements were averaged to 3.85 MHz and 0.0112, respectively. The maximum measured ultrasound intensity in water, measured at a distance of 4 mm, was 4.6 µW cm−2 from a single pMUT element driven by a 5 Vpp sine wave at 2.22 MHz. Potential applications for development of a TCTB-arranged 2D pMUT array include ultrasonic medical imaging, ultrasonic communication, ultrasonic range-finding and handwriting input systems.</description><subject>Acoustical measurements and instrumentation</subject><subject>Acoustics</subject><subject>Arrays</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Joints</subject><subject>Lead zirconate titanates</subject><subject>MEMS</subject><subject>Micromechanics</subject><subject>Physics</subject><subject>piezoelectric micro machined ultrasonic transducer</subject><subject>Piezoelectricity</subject><subject>PZT</subject><subject>resonant frequency</subject><subject>Transducers</subject><subject>Two dimensional</subject><subject>Ultrasonic testing</subject><subject>ultrasound intensity</subject><issn>0960-1317</issn><issn>1361-6439</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFUctqHSEYltJAT076CsVNoBt7vI3OLENokkKgm2QtjpfEMKNTdVqSl-mrxukJ2RYFf_S7-H8_AF8I_kZw3x_wIDAijMgDZQdC2-4wkx_AjjBBkOBs-Ah276BP4LSUJ4wJ6Um_A3-v9JiD0TWkCJOHGtY_Cdkwu1jalZ7gEtxLcpMzteHgHExOszaPIToL16lmXVJsD62Ixa7GZahz1s9wLSE-bHppQY1TSvrtMqoJjanWNMNS82rqmh3U0cLZ1ebVvmIfHDQpxubX_MsZOPF6Ku7z27kH91ff7y5v0O3P6x-XF7fItCYrsszTrhNtcTowoXtpLR8H57U3nHe0H7wwwnYjt4TJ3o-SGO4HJon1wlHK9uDrUXfJ6dfqSlVzKMZNk44urUURIeUgO042qDhC_3WVnVdLDrPOz4pgtU1EbWGrLWxFmSJUHSfSiOdvHroYPfmWmAnlnU17zEXHNgN6xIW0qKe05jaG8j_xV80Vnvw</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>Jung, Joontaek</creator><creator>Kim, Sangwon</creator><creator>Lee, Wonjun</creator><creator>Choi, Hongsoo</creator><general>IOP Publishing</general><general>Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20131201</creationdate><title>Fabrication of a two-dimensional piezoelectric micromachined ultrasonic transducer array using a top-crossover-to-bottom structure and metal bridge connections</title><author>Jung, Joontaek ; Kim, Sangwon ; Lee, Wonjun ; Choi, Hongsoo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-d3f255656542936a87dd4b9efafc445289f6c6d5b4d1378fb71c4f9371df6e223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Acoustical measurements and instrumentation</topic><topic>Acoustics</topic><topic>Arrays</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Joints</topic><topic>Lead zirconate titanates</topic><topic>MEMS</topic><topic>Micromechanics</topic><topic>Physics</topic><topic>piezoelectric micro machined ultrasonic transducer</topic><topic>Piezoelectricity</topic><topic>PZT</topic><topic>resonant frequency</topic><topic>Transducers</topic><topic>Two dimensional</topic><topic>Ultrasonic testing</topic><topic>ultrasound intensity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jung, Joontaek</creatorcontrib><creatorcontrib>Kim, Sangwon</creatorcontrib><creatorcontrib>Lee, Wonjun</creatorcontrib><creatorcontrib>Choi, Hongsoo</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of micromechanics and microengineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jung, Joontaek</au><au>Kim, Sangwon</au><au>Lee, Wonjun</au><au>Choi, Hongsoo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fabrication of a two-dimensional piezoelectric micromachined ultrasonic transducer array using a top-crossover-to-bottom structure and metal bridge connections</atitle><jtitle>Journal of micromechanics and microengineering</jtitle><stitle>JMM</stitle><addtitle>J. Micromech. Microeng</addtitle><date>2013-12-01</date><risdate>2013</risdate><volume>23</volume><issue>12</issue><spage>125037</spage><epage>9</epage><pages>125037-9</pages><issn>0960-1317</issn><eissn>1361-6439</eissn><coden>JMMIEZ</coden><abstract>A new design methodology and fabrication process for two-dimensional (2D) piezoelectric micromachined ultrasonic transducer (pMUT) arrays using a top-crossover-to-bottom (TCTB) structure was developed. Individual sensing and actuation of pMUT elements from a small number of connection lines was enabled by the TCTB structure, and the parasitic coupling capacitance of the array was significantly reduced as a result. A 32 × 32 pMUT array with a TCTB structure was fabricated, resulting in 64 connection lines over an area of 4.8 × 4.8 mm2. The top electrodes for each pMUT element were re-connected by metal bridging after bottom-electrode etching caused them to become disconnected. A deep reactive ion etching process was used to compactify the array. Each pMUT element was a circular-shaped K31-type ultrasonic transducer using a 1 µm thick sol-gel lead zirconate titanate (PZT: Pb1.10 Zr0.52 Ti0.48) thin film. To characterize a single element in the 2D pMUT array, the resonant frequency and coupling coefficient of 20 pMUT elements were averaged to 3.85 MHz and 0.0112, respectively. The maximum measured ultrasound intensity in water, measured at a distance of 4 mm, was 4.6 µW cm−2 from a single pMUT element driven by a 5 Vpp sine wave at 2.22 MHz. Potential applications for development of a TCTB-arranged 2D pMUT array include ultrasonic medical imaging, ultrasonic communication, ultrasonic range-finding and handwriting input systems.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/0960-1317/23/12/125037</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0960-1317
ispartof Journal of micromechanics and microengineering, 2013-12, Vol.23 (12), p.125037-9
issn 0960-1317
1361-6439
language eng
recordid cdi_pascalfrancis_primary_28046532
source Institute of Physics Journals
subjects Acoustical measurements and instrumentation
Acoustics
Arrays
Exact sciences and technology
Fundamental areas of phenomenology (including applications)
Joints
Lead zirconate titanates
MEMS
Micromechanics
Physics
piezoelectric micro machined ultrasonic transducer
Piezoelectricity
PZT
resonant frequency
Transducers
Two dimensional
Ultrasonic testing
ultrasound intensity
title Fabrication of a two-dimensional piezoelectric micromachined ultrasonic transducer array using a top-crossover-to-bottom structure and metal bridge connections
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T05%3A39%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fabrication%20of%20a%20two-dimensional%20piezoelectric%20micromachined%20ultrasonic%20transducer%20array%20using%20a%20top-crossover-to-bottom%20structure%20and%20metal%20bridge%20connections&rft.jtitle=Journal%20of%20micromechanics%20and%20microengineering&rft.au=Jung,%20Joontaek&rft.date=2013-12-01&rft.volume=23&rft.issue=12&rft.spage=125037&rft.epage=9&rft.pages=125037-9&rft.issn=0960-1317&rft.eissn=1361-6439&rft.coden=JMMIEZ&rft_id=info:doi/10.1088/0960-1317/23/12/125037&rft_dat=%3Cproquest_pasca%3E1677975412%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1677975412&rft_id=info:pmid/&rfr_iscdi=true