Fabrication of a two-dimensional piezoelectric micromachined ultrasonic transducer array using a top-crossover-to-bottom structure and metal bridge connections
A new design methodology and fabrication process for two-dimensional (2D) piezoelectric micromachined ultrasonic transducer (pMUT) arrays using a top-crossover-to-bottom (TCTB) structure was developed. Individual sensing and actuation of pMUT elements from a small number of connection lines was enab...
Gespeichert in:
Veröffentlicht in: | Journal of micromechanics and microengineering 2013-12, Vol.23 (12), p.125037-9 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9 |
---|---|
container_issue | 12 |
container_start_page | 125037 |
container_title | Journal of micromechanics and microengineering |
container_volume | 23 |
creator | Jung, Joontaek Kim, Sangwon Lee, Wonjun Choi, Hongsoo |
description | A new design methodology and fabrication process for two-dimensional (2D) piezoelectric micromachined ultrasonic transducer (pMUT) arrays using a top-crossover-to-bottom (TCTB) structure was developed. Individual sensing and actuation of pMUT elements from a small number of connection lines was enabled by the TCTB structure, and the parasitic coupling capacitance of the array was significantly reduced as a result. A 32 × 32 pMUT array with a TCTB structure was fabricated, resulting in 64 connection lines over an area of 4.8 × 4.8 mm2. The top electrodes for each pMUT element were re-connected by metal bridging after bottom-electrode etching caused them to become disconnected. A deep reactive ion etching process was used to compactify the array. Each pMUT element was a circular-shaped K31-type ultrasonic transducer using a 1 µm thick sol-gel lead zirconate titanate (PZT: Pb1.10 Zr0.52 Ti0.48) thin film. To characterize a single element in the 2D pMUT array, the resonant frequency and coupling coefficient of 20 pMUT elements were averaged to 3.85 MHz and 0.0112, respectively. The maximum measured ultrasound intensity in water, measured at a distance of 4 mm, was 4.6 µW cm−2 from a single pMUT element driven by a 5 Vpp sine wave at 2.22 MHz. Potential applications for development of a TCTB-arranged 2D pMUT array include ultrasonic medical imaging, ultrasonic communication, ultrasonic range-finding and handwriting input systems. |
doi_str_mv | 10.1088/0960-1317/23/12/125037 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_28046532</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1677975412</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-d3f255656542936a87dd4b9efafc445289f6c6d5b4d1378fb71c4f9371df6e223</originalsourceid><addsrcrecordid>eNqFUctqHSEYltJAT076CsVNoBt7vI3OLENokkKgm2QtjpfEMKNTdVqSl-mrxukJ2RYFf_S7-H8_AF8I_kZw3x_wIDAijMgDZQdC2-4wkx_AjjBBkOBs-Ah276BP4LSUJ4wJ6Um_A3-v9JiD0TWkCJOHGtY_Cdkwu1jalZ7gEtxLcpMzteHgHExOszaPIToL16lmXVJsD62Ixa7GZahz1s9wLSE-bHppQY1TSvrtMqoJjanWNMNS82rqmh3U0cLZ1ebVvmIfHDQpxubX_MsZOPF6Ku7z27kH91ff7y5v0O3P6x-XF7fItCYrsszTrhNtcTowoXtpLR8H57U3nHe0H7wwwnYjt4TJ3o-SGO4HJon1wlHK9uDrUXfJ6dfqSlVzKMZNk44urUURIeUgO042qDhC_3WVnVdLDrPOz4pgtU1EbWGrLWxFmSJUHSfSiOdvHroYPfmWmAnlnU17zEXHNgN6xIW0qKe05jaG8j_xV80Vnvw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1677975412</pqid></control><display><type>article</type><title>Fabrication of a two-dimensional piezoelectric micromachined ultrasonic transducer array using a top-crossover-to-bottom structure and metal bridge connections</title><source>Institute of Physics Journals</source><creator>Jung, Joontaek ; Kim, Sangwon ; Lee, Wonjun ; Choi, Hongsoo</creator><creatorcontrib>Jung, Joontaek ; Kim, Sangwon ; Lee, Wonjun ; Choi, Hongsoo</creatorcontrib><description>A new design methodology and fabrication process for two-dimensional (2D) piezoelectric micromachined ultrasonic transducer (pMUT) arrays using a top-crossover-to-bottom (TCTB) structure was developed. Individual sensing and actuation of pMUT elements from a small number of connection lines was enabled by the TCTB structure, and the parasitic coupling capacitance of the array was significantly reduced as a result. A 32 × 32 pMUT array with a TCTB structure was fabricated, resulting in 64 connection lines over an area of 4.8 × 4.8 mm2. The top electrodes for each pMUT element were re-connected by metal bridging after bottom-electrode etching caused them to become disconnected. A deep reactive ion etching process was used to compactify the array. Each pMUT element was a circular-shaped K31-type ultrasonic transducer using a 1 µm thick sol-gel lead zirconate titanate (PZT: Pb1.10 Zr0.52 Ti0.48) thin film. To characterize a single element in the 2D pMUT array, the resonant frequency and coupling coefficient of 20 pMUT elements were averaged to 3.85 MHz and 0.0112, respectively. The maximum measured ultrasound intensity in water, measured at a distance of 4 mm, was 4.6 µW cm−2 from a single pMUT element driven by a 5 Vpp sine wave at 2.22 MHz. Potential applications for development of a TCTB-arranged 2D pMUT array include ultrasonic medical imaging, ultrasonic communication, ultrasonic range-finding and handwriting input systems.</description><identifier>ISSN: 0960-1317</identifier><identifier>EISSN: 1361-6439</identifier><identifier>DOI: 10.1088/0960-1317/23/12/125037</identifier><identifier>CODEN: JMMIEZ</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Acoustical measurements and instrumentation ; Acoustics ; Arrays ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Joints ; Lead zirconate titanates ; MEMS ; Micromechanics ; Physics ; piezoelectric micro machined ultrasonic transducer ; Piezoelectricity ; PZT ; resonant frequency ; Transducers ; Two dimensional ; Ultrasonic testing ; ultrasound intensity</subject><ispartof>Journal of micromechanics and microengineering, 2013-12, Vol.23 (12), p.125037-9</ispartof><rights>2013 IOP Publishing Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-d3f255656542936a87dd4b9efafc445289f6c6d5b4d1378fb71c4f9371df6e223</citedby><cites>FETCH-LOGICAL-c361t-d3f255656542936a87dd4b9efafc445289f6c6d5b4d1378fb71c4f9371df6e223</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/0960-1317/23/12/125037/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,53821,53868</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28046532$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Jung, Joontaek</creatorcontrib><creatorcontrib>Kim, Sangwon</creatorcontrib><creatorcontrib>Lee, Wonjun</creatorcontrib><creatorcontrib>Choi, Hongsoo</creatorcontrib><title>Fabrication of a two-dimensional piezoelectric micromachined ultrasonic transducer array using a top-crossover-to-bottom structure and metal bridge connections</title><title>Journal of micromechanics and microengineering</title><addtitle>JMM</addtitle><addtitle>J. Micromech. Microeng</addtitle><description>A new design methodology and fabrication process for two-dimensional (2D) piezoelectric micromachined ultrasonic transducer (pMUT) arrays using a top-crossover-to-bottom (TCTB) structure was developed. Individual sensing and actuation of pMUT elements from a small number of connection lines was enabled by the TCTB structure, and the parasitic coupling capacitance of the array was significantly reduced as a result. A 32 × 32 pMUT array with a TCTB structure was fabricated, resulting in 64 connection lines over an area of 4.8 × 4.8 mm2. The top electrodes for each pMUT element were re-connected by metal bridging after bottom-electrode etching caused them to become disconnected. A deep reactive ion etching process was used to compactify the array. Each pMUT element was a circular-shaped K31-type ultrasonic transducer using a 1 µm thick sol-gel lead zirconate titanate (PZT: Pb1.10 Zr0.52 Ti0.48) thin film. To characterize a single element in the 2D pMUT array, the resonant frequency and coupling coefficient of 20 pMUT elements were averaged to 3.85 MHz and 0.0112, respectively. The maximum measured ultrasound intensity in water, measured at a distance of 4 mm, was 4.6 µW cm−2 from a single pMUT element driven by a 5 Vpp sine wave at 2.22 MHz. Potential applications for development of a TCTB-arranged 2D pMUT array include ultrasonic medical imaging, ultrasonic communication, ultrasonic range-finding and handwriting input systems.</description><subject>Acoustical measurements and instrumentation</subject><subject>Acoustics</subject><subject>Arrays</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Joints</subject><subject>Lead zirconate titanates</subject><subject>MEMS</subject><subject>Micromechanics</subject><subject>Physics</subject><subject>piezoelectric micro machined ultrasonic transducer</subject><subject>Piezoelectricity</subject><subject>PZT</subject><subject>resonant frequency</subject><subject>Transducers</subject><subject>Two dimensional</subject><subject>Ultrasonic testing</subject><subject>ultrasound intensity</subject><issn>0960-1317</issn><issn>1361-6439</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFUctqHSEYltJAT076CsVNoBt7vI3OLENokkKgm2QtjpfEMKNTdVqSl-mrxukJ2RYFf_S7-H8_AF8I_kZw3x_wIDAijMgDZQdC2-4wkx_AjjBBkOBs-Ah276BP4LSUJ4wJ6Um_A3-v9JiD0TWkCJOHGtY_Cdkwu1jalZ7gEtxLcpMzteHgHExOszaPIToL16lmXVJsD62Ixa7GZahz1s9wLSE-bHppQY1TSvrtMqoJjanWNMNS82rqmh3U0cLZ1ebVvmIfHDQpxubX_MsZOPF6Ku7z27kH91ff7y5v0O3P6x-XF7fItCYrsszTrhNtcTowoXtpLR8H57U3nHe0H7wwwnYjt4TJ3o-SGO4HJon1wlHK9uDrUXfJ6dfqSlVzKMZNk44urUURIeUgO042qDhC_3WVnVdLDrPOz4pgtU1EbWGrLWxFmSJUHSfSiOdvHroYPfmWmAnlnU17zEXHNgN6xIW0qKe05jaG8j_xV80Vnvw</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>Jung, Joontaek</creator><creator>Kim, Sangwon</creator><creator>Lee, Wonjun</creator><creator>Choi, Hongsoo</creator><general>IOP Publishing</general><general>Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20131201</creationdate><title>Fabrication of a two-dimensional piezoelectric micromachined ultrasonic transducer array using a top-crossover-to-bottom structure and metal bridge connections</title><author>Jung, Joontaek ; Kim, Sangwon ; Lee, Wonjun ; Choi, Hongsoo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-d3f255656542936a87dd4b9efafc445289f6c6d5b4d1378fb71c4f9371df6e223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Acoustical measurements and instrumentation</topic><topic>Acoustics</topic><topic>Arrays</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Joints</topic><topic>Lead zirconate titanates</topic><topic>MEMS</topic><topic>Micromechanics</topic><topic>Physics</topic><topic>piezoelectric micro machined ultrasonic transducer</topic><topic>Piezoelectricity</topic><topic>PZT</topic><topic>resonant frequency</topic><topic>Transducers</topic><topic>Two dimensional</topic><topic>Ultrasonic testing</topic><topic>ultrasound intensity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jung, Joontaek</creatorcontrib><creatorcontrib>Kim, Sangwon</creatorcontrib><creatorcontrib>Lee, Wonjun</creatorcontrib><creatorcontrib>Choi, Hongsoo</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of micromechanics and microengineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jung, Joontaek</au><au>Kim, Sangwon</au><au>Lee, Wonjun</au><au>Choi, Hongsoo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fabrication of a two-dimensional piezoelectric micromachined ultrasonic transducer array using a top-crossover-to-bottom structure and metal bridge connections</atitle><jtitle>Journal of micromechanics and microengineering</jtitle><stitle>JMM</stitle><addtitle>J. Micromech. Microeng</addtitle><date>2013-12-01</date><risdate>2013</risdate><volume>23</volume><issue>12</issue><spage>125037</spage><epage>9</epage><pages>125037-9</pages><issn>0960-1317</issn><eissn>1361-6439</eissn><coden>JMMIEZ</coden><abstract>A new design methodology and fabrication process for two-dimensional (2D) piezoelectric micromachined ultrasonic transducer (pMUT) arrays using a top-crossover-to-bottom (TCTB) structure was developed. Individual sensing and actuation of pMUT elements from a small number of connection lines was enabled by the TCTB structure, and the parasitic coupling capacitance of the array was significantly reduced as a result. A 32 × 32 pMUT array with a TCTB structure was fabricated, resulting in 64 connection lines over an area of 4.8 × 4.8 mm2. The top electrodes for each pMUT element were re-connected by metal bridging after bottom-electrode etching caused them to become disconnected. A deep reactive ion etching process was used to compactify the array. Each pMUT element was a circular-shaped K31-type ultrasonic transducer using a 1 µm thick sol-gel lead zirconate titanate (PZT: Pb1.10 Zr0.52 Ti0.48) thin film. To characterize a single element in the 2D pMUT array, the resonant frequency and coupling coefficient of 20 pMUT elements were averaged to 3.85 MHz and 0.0112, respectively. The maximum measured ultrasound intensity in water, measured at a distance of 4 mm, was 4.6 µW cm−2 from a single pMUT element driven by a 5 Vpp sine wave at 2.22 MHz. Potential applications for development of a TCTB-arranged 2D pMUT array include ultrasonic medical imaging, ultrasonic communication, ultrasonic range-finding and handwriting input systems.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/0960-1317/23/12/125037</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0960-1317 |
ispartof | Journal of micromechanics and microengineering, 2013-12, Vol.23 (12), p.125037-9 |
issn | 0960-1317 1361-6439 |
language | eng |
recordid | cdi_pascalfrancis_primary_28046532 |
source | Institute of Physics Journals |
subjects | Acoustical measurements and instrumentation Acoustics Arrays Exact sciences and technology Fundamental areas of phenomenology (including applications) Joints Lead zirconate titanates MEMS Micromechanics Physics piezoelectric micro machined ultrasonic transducer Piezoelectricity PZT resonant frequency Transducers Two dimensional Ultrasonic testing ultrasound intensity |
title | Fabrication of a two-dimensional piezoelectric micromachined ultrasonic transducer array using a top-crossover-to-bottom structure and metal bridge connections |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T05%3A39%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fabrication%20of%20a%20two-dimensional%20piezoelectric%20micromachined%20ultrasonic%20transducer%20array%20using%20a%20top-crossover-to-bottom%20structure%20and%20metal%20bridge%20connections&rft.jtitle=Journal%20of%20micromechanics%20and%20microengineering&rft.au=Jung,%20Joontaek&rft.date=2013-12-01&rft.volume=23&rft.issue=12&rft.spage=125037&rft.epage=9&rft.pages=125037-9&rft.issn=0960-1317&rft.eissn=1361-6439&rft.coden=JMMIEZ&rft_id=info:doi/10.1088/0960-1317/23/12/125037&rft_dat=%3Cproquest_pasca%3E1677975412%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1677975412&rft_id=info:pmid/&rfr_iscdi=true |