Design of S-Graded Buffer Layers for Metamorphic ZnSySe1−y/GaAs (001) Semiconductor Devices
We present design equations for error function (or “S-graded”) graded buffers for use in accommodating lattice mismatch of heteroepitaxial semiconductor devices. In an S-graded metamorphic buffer layer the composition and lattice mismatch profiles follow a normal cumulative distribution function. Mi...
Gespeichert in:
Veröffentlicht in: | Journal of electronic materials 2013, Vol.42 (12), p.3408-3420 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3420 |
---|---|
container_issue | 12 |
container_start_page | 3408 |
container_title | Journal of electronic materials |
container_volume | 42 |
creator | Kujofsa, T. Antony, A. Xhurxhi, S. Obst, F. Sidoti, D. Bertoli, B. Cheruku, S. Correa, J. P. Rago, P. B. Suarez, E. N. Jain, F. C. Ayers, J. E. |
description | We present design equations for error function (or “S-graded”) graded buffers for use in accommodating lattice mismatch of heteroepitaxial semiconductor devices. In an S-graded metamorphic buffer layer the composition and lattice mismatch profiles follow a normal cumulative distribution function. Minimum-energy calculations suggest that the S-graded profile may be beneficial for control of defect densities in lattice-mismatched devices because they have several characteristics which enhance the mobility and glide velocities of dislocations, thereby promoting long misfit segments with relatively few threading arms. First, there is a misfit-dislocation-free zone (MDFZ) adjacent to the interface, which avoids dislocation pinning defects associated with substrate defects. Second, there is another MDFZ near the surface, which reduces pinning interactions near the device layer which will be grown on top. Third, there is a large built-in strain in the top MDFZ, which enhances the glide of dislocations to sweep out threading arms. In this paper we present approximate design equations for the widths of the MDFZs, the built-in strain, and the peak misfit dislocation density for a general S-graded semiconductor with diamond or zincblende crystal structure and (001) orientation, and show that these design equations are in fair agreement with detailed numerical energy-minimization calculations for ZnS
y
Se
1−
y
/GaAs (001) heterostructures. |
doi_str_mv | 10.1007/s11664-013-2771-0 |
format | Article |
fullrecord | <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_27976813</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>27976813</sourcerecordid><originalsourceid>FETCH-LOGICAL-p730-3a4e3ebec0a772146bf2f29d10786ede1b2f527fea3bebfbe90bb5b184a821a33</originalsourceid><addsrcrecordid>eNotkE9LwzAYxoMoOKcfwFsugh6ieZM26Y5z0ylMPHQHESQk7ZvZsbUl2YR-A89-RD-JHfP0HJ4_PPwIuQR-C5zruwigVMI4SCa0BsaPyADSRDLI1NsxGXCpgKVCpqfkLMYV55BCBgPyMcVYLWvaeJqzWbAllvR-5z0GOrcdhkh9E-gLbu2mCe1nVdD3Ou9yhN_vn-5uZseRXvdjNzTHTVU0dbkrtn1hil9VgfGcnHi7jnjxr0OyeHxYTJ7Y_HX2PBnPWaslZ9ImKNFhwa3WAhLlvPBiVALXmcISwQmfCu3RSofOOxxx51IHWWIzAVbKIbk6zLY2Fnbtg62LKpo2VBsbOiP0SKsM9jlxyMXeqpcYzKrZhbp_ZoCbPUdz4Gh6jmbP0XD5BxBmZiM</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Design of S-Graded Buffer Layers for Metamorphic ZnSySe1−y/GaAs (001) Semiconductor Devices</title><source>SpringerLink Journals</source><creator>Kujofsa, T. ; Antony, A. ; Xhurxhi, S. ; Obst, F. ; Sidoti, D. ; Bertoli, B. ; Cheruku, S. ; Correa, J. P. ; Rago, P. B. ; Suarez, E. N. ; Jain, F. C. ; Ayers, J. E.</creator><creatorcontrib>Kujofsa, T. ; Antony, A. ; Xhurxhi, S. ; Obst, F. ; Sidoti, D. ; Bertoli, B. ; Cheruku, S. ; Correa, J. P. ; Rago, P. B. ; Suarez, E. N. ; Jain, F. C. ; Ayers, J. E.</creatorcontrib><description>We present design equations for error function (or “S-graded”) graded buffers for use in accommodating lattice mismatch of heteroepitaxial semiconductor devices. In an S-graded metamorphic buffer layer the composition and lattice mismatch profiles follow a normal cumulative distribution function. Minimum-energy calculations suggest that the S-graded profile may be beneficial for control of defect densities in lattice-mismatched devices because they have several characteristics which enhance the mobility and glide velocities of dislocations, thereby promoting long misfit segments with relatively few threading arms. First, there is a misfit-dislocation-free zone (MDFZ) adjacent to the interface, which avoids dislocation pinning defects associated with substrate defects. Second, there is another MDFZ near the surface, which reduces pinning interactions near the device layer which will be grown on top. Third, there is a large built-in strain in the top MDFZ, which enhances the glide of dislocations to sweep out threading arms. In this paper we present approximate design equations for the widths of the MDFZs, the built-in strain, and the peak misfit dislocation density for a general S-graded semiconductor with diamond or zincblende crystal structure and (001) orientation, and show that these design equations are in fair agreement with detailed numerical energy-minimization calculations for ZnS
y
Se
1−
y
/GaAs (001) heterostructures.</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-013-2771-0</identifier><identifier>CODEN: JECMA5</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Condensed matter: structure, mechanical and thermal properties ; Defects and impurities in crystals; microstructure ; Electronics and Microelectronics ; Exact sciences and technology ; Instrumentation ; Linear defects: dislocations, disclinations ; Materials Science ; Optical and Electronic Materials ; Physics ; Solid State Physics ; Structure of solids and liquids; crystallography ; Structure of specific crystalline solids</subject><ispartof>Journal of electronic materials, 2013, Vol.42 (12), p.3408-3420</ispartof><rights>TMS 2013</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11664-013-2771-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11664-013-2771-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,4010,27900,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27976813$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kujofsa, T.</creatorcontrib><creatorcontrib>Antony, A.</creatorcontrib><creatorcontrib>Xhurxhi, S.</creatorcontrib><creatorcontrib>Obst, F.</creatorcontrib><creatorcontrib>Sidoti, D.</creatorcontrib><creatorcontrib>Bertoli, B.</creatorcontrib><creatorcontrib>Cheruku, S.</creatorcontrib><creatorcontrib>Correa, J. P.</creatorcontrib><creatorcontrib>Rago, P. B.</creatorcontrib><creatorcontrib>Suarez, E. N.</creatorcontrib><creatorcontrib>Jain, F. C.</creatorcontrib><creatorcontrib>Ayers, J. E.</creatorcontrib><title>Design of S-Graded Buffer Layers for Metamorphic ZnSySe1−y/GaAs (001) Semiconductor Devices</title><title>Journal of electronic materials</title><addtitle>Journal of Elec Materi</addtitle><description>We present design equations for error function (or “S-graded”) graded buffers for use in accommodating lattice mismatch of heteroepitaxial semiconductor devices. In an S-graded metamorphic buffer layer the composition and lattice mismatch profiles follow a normal cumulative distribution function. Minimum-energy calculations suggest that the S-graded profile may be beneficial for control of defect densities in lattice-mismatched devices because they have several characteristics which enhance the mobility and glide velocities of dislocations, thereby promoting long misfit segments with relatively few threading arms. First, there is a misfit-dislocation-free zone (MDFZ) adjacent to the interface, which avoids dislocation pinning defects associated with substrate defects. Second, there is another MDFZ near the surface, which reduces pinning interactions near the device layer which will be grown on top. Third, there is a large built-in strain in the top MDFZ, which enhances the glide of dislocations to sweep out threading arms. In this paper we present approximate design equations for the widths of the MDFZs, the built-in strain, and the peak misfit dislocation density for a general S-graded semiconductor with diamond or zincblende crystal structure and (001) orientation, and show that these design equations are in fair agreement with detailed numerical energy-minimization calculations for ZnS
y
Se
1−
y
/GaAs (001) heterostructures.</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Defects and impurities in crystals; microstructure</subject><subject>Electronics and Microelectronics</subject><subject>Exact sciences and technology</subject><subject>Instrumentation</subject><subject>Linear defects: dislocations, disclinations</subject><subject>Materials Science</subject><subject>Optical and Electronic Materials</subject><subject>Physics</subject><subject>Solid State Physics</subject><subject>Structure of solids and liquids; crystallography</subject><subject>Structure of specific crystalline solids</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNotkE9LwzAYxoMoOKcfwFsugh6ieZM26Y5z0ylMPHQHESQk7ZvZsbUl2YR-A89-RD-JHfP0HJ4_PPwIuQR-C5zruwigVMI4SCa0BsaPyADSRDLI1NsxGXCpgKVCpqfkLMYV55BCBgPyMcVYLWvaeJqzWbAllvR-5z0GOrcdhkh9E-gLbu2mCe1nVdD3Ou9yhN_vn-5uZseRXvdjNzTHTVU0dbkrtn1hil9VgfGcnHi7jnjxr0OyeHxYTJ7Y_HX2PBnPWaslZ9ImKNFhwa3WAhLlvPBiVALXmcISwQmfCu3RSofOOxxx51IHWWIzAVbKIbk6zLY2Fnbtg62LKpo2VBsbOiP0SKsM9jlxyMXeqpcYzKrZhbp_ZoCbPUdz4Gh6jmbP0XD5BxBmZiM</recordid><startdate>2013</startdate><enddate>2013</enddate><creator>Kujofsa, T.</creator><creator>Antony, A.</creator><creator>Xhurxhi, S.</creator><creator>Obst, F.</creator><creator>Sidoti, D.</creator><creator>Bertoli, B.</creator><creator>Cheruku, S.</creator><creator>Correa, J. P.</creator><creator>Rago, P. B.</creator><creator>Suarez, E. N.</creator><creator>Jain, F. C.</creator><creator>Ayers, J. E.</creator><general>Springer US</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2013</creationdate><title>Design of S-Graded Buffer Layers for Metamorphic ZnSySe1−y/GaAs (001) Semiconductor Devices</title><author>Kujofsa, T. ; Antony, A. ; Xhurxhi, S. ; Obst, F. ; Sidoti, D. ; Bertoli, B. ; Cheruku, S. ; Correa, J. P. ; Rago, P. B. ; Suarez, E. N. ; Jain, F. C. ; Ayers, J. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p730-3a4e3ebec0a772146bf2f29d10786ede1b2f527fea3bebfbe90bb5b184a821a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Defects and impurities in crystals; microstructure</topic><topic>Electronics and Microelectronics</topic><topic>Exact sciences and technology</topic><topic>Instrumentation</topic><topic>Linear defects: dislocations, disclinations</topic><topic>Materials Science</topic><topic>Optical and Electronic Materials</topic><topic>Physics</topic><topic>Solid State Physics</topic><topic>Structure of solids and liquids; crystallography</topic><topic>Structure of specific crystalline solids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kujofsa, T.</creatorcontrib><creatorcontrib>Antony, A.</creatorcontrib><creatorcontrib>Xhurxhi, S.</creatorcontrib><creatorcontrib>Obst, F.</creatorcontrib><creatorcontrib>Sidoti, D.</creatorcontrib><creatorcontrib>Bertoli, B.</creatorcontrib><creatorcontrib>Cheruku, S.</creatorcontrib><creatorcontrib>Correa, J. P.</creatorcontrib><creatorcontrib>Rago, P. B.</creatorcontrib><creatorcontrib>Suarez, E. N.</creatorcontrib><creatorcontrib>Jain, F. C.</creatorcontrib><creatorcontrib>Ayers, J. E.</creatorcontrib><collection>Pascal-Francis</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kujofsa, T.</au><au>Antony, A.</au><au>Xhurxhi, S.</au><au>Obst, F.</au><au>Sidoti, D.</au><au>Bertoli, B.</au><au>Cheruku, S.</au><au>Correa, J. P.</au><au>Rago, P. B.</au><au>Suarez, E. N.</au><au>Jain, F. C.</au><au>Ayers, J. E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design of S-Graded Buffer Layers for Metamorphic ZnSySe1−y/GaAs (001) Semiconductor Devices</atitle><jtitle>Journal of electronic materials</jtitle><stitle>Journal of Elec Materi</stitle><date>2013</date><risdate>2013</risdate><volume>42</volume><issue>12</issue><spage>3408</spage><epage>3420</epage><pages>3408-3420</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><coden>JECMA5</coden><abstract>We present design equations for error function (or “S-graded”) graded buffers for use in accommodating lattice mismatch of heteroepitaxial semiconductor devices. In an S-graded metamorphic buffer layer the composition and lattice mismatch profiles follow a normal cumulative distribution function. Minimum-energy calculations suggest that the S-graded profile may be beneficial for control of defect densities in lattice-mismatched devices because they have several characteristics which enhance the mobility and glide velocities of dislocations, thereby promoting long misfit segments with relatively few threading arms. First, there is a misfit-dislocation-free zone (MDFZ) adjacent to the interface, which avoids dislocation pinning defects associated with substrate defects. Second, there is another MDFZ near the surface, which reduces pinning interactions near the device layer which will be grown on top. Third, there is a large built-in strain in the top MDFZ, which enhances the glide of dislocations to sweep out threading arms. In this paper we present approximate design equations for the widths of the MDFZs, the built-in strain, and the peak misfit dislocation density for a general S-graded semiconductor with diamond or zincblende crystal structure and (001) orientation, and show that these design equations are in fair agreement with detailed numerical energy-minimization calculations for ZnS
y
Se
1−
y
/GaAs (001) heterostructures.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s11664-013-2771-0</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0361-5235 |
ispartof | Journal of electronic materials, 2013, Vol.42 (12), p.3408-3420 |
issn | 0361-5235 1543-186X |
language | eng |
recordid | cdi_pascalfrancis_primary_27976813 |
source | SpringerLink Journals |
subjects | Characterization and Evaluation of Materials Chemistry and Materials Science Condensed matter: structure, mechanical and thermal properties Defects and impurities in crystals microstructure Electronics and Microelectronics Exact sciences and technology Instrumentation Linear defects: dislocations, disclinations Materials Science Optical and Electronic Materials Physics Solid State Physics Structure of solids and liquids crystallography Structure of specific crystalline solids |
title | Design of S-Graded Buffer Layers for Metamorphic ZnSySe1−y/GaAs (001) Semiconductor Devices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T05%3A48%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20of%20S-Graded%20Buffer%20Layers%20for%20Metamorphic%20ZnSySe1%E2%88%92y/GaAs%20(001)%20Semiconductor%20Devices&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=Kujofsa,%20T.&rft.date=2013&rft.volume=42&rft.issue=12&rft.spage=3408&rft.epage=3420&rft.pages=3408-3420&rft.issn=0361-5235&rft.eissn=1543-186X&rft.coden=JECMA5&rft_id=info:doi/10.1007/s11664-013-2771-0&rft_dat=%3Cpascalfrancis_sprin%3E27976813%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |