Optimization of gold nanoring arrays for biosensing in the fiber-optic communication window
To improve the limit of detection in a nanoplasmonic sensor system, the optical performance of the metal nanostructures should be optimized according to the best spectral window of the measurement instrument. We propose that the spectral window from 1460 to 1610 nm can potentially provide ultrahigh...
Gespeichert in:
Veröffentlicht in: | Nanotechnology 2013-11, Vol.24 (46), p.465502 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 46 |
container_start_page | 465502 |
container_title | Nanotechnology |
container_volume | 24 |
creator | Jiang, Hao Li, Tingjie Yang, Jun Mittler, Silvia Sabarinathan, Jayshri |
description | To improve the limit of detection in a nanoplasmonic sensor system, the optical performance of the metal nanostructures should be optimized according to the best spectral window of the measurement instrument. We propose that the spectral window from 1460 to 1610 nm can potentially provide ultrahigh instrumental resolution for biosensing. We optimized gold nanoring arrays such that the extinction peak position is inside the proposed window, the extinction peak is sharp enough to track the peak shift with high resolution and the figure of merit (sensitivity/linewidth) of the array is optimized at the same time. The peak-sharpening effect of the array caused by coherent interaction plays a central role in the optimization. The optimized array has a lattice constant in the range [1000 nm,1060 nm], a bulk index sensitivity of around 450 nm RIU and a figure of merit larger than 4. It is an enabling sensor element for a near-infrared sensor chip with ultrahigh resolution. |
doi_str_mv | 10.1088/0957-4484/24/46/465502 |
format | Article |
fullrecord | <record><control><sourceid>pubmed_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_27949071</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>24157520</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-d40c5200afde13deec2382e9fb629135f6b415a40511aa59d54c2b75bb53e4cd3</originalsourceid><addsrcrecordid>eNqFkEtrAyEYRaW0NGnavxDcdDmNOjqPZQl9QSCbdtWFqKOpIaODTgjpr6_DpOmyIAhy7vX7DgBzjB4wqqoFqlmZUVrRBaELWqTDGCIXYIrzAmcFI9UlmJ6hCbiJcYsQxhXB12BCKGYlI2gKPtddb1v7LXrrHfQGbvyugU44H6zbQBGCOEZofIDS-qhdHF6tg_2XhsZKHTKfChRUvm33zqqx52Bd4w-34MqIXdR3p3sGPp6f3pev2Wr98rZ8XGUqr2ifNRSpNAsSptE4b7RWJK-Iro0sSI1zZgqZxhUUMYyFYHXDqCKyZFKyXFPV5DNQjL0q-BiDNrwLthXhyDHigy0-iOCDCE4opwUfbaXgfAx2e9nq5hz71ZOA-xMgohI7E4RTNv5xZU1rVOLEkZGzvuNbvw8u7fvf7z8-xoLC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Optimization of gold nanoring arrays for biosensing in the fiber-optic communication window</title><source>MEDLINE</source><source>Institute of Physics Journals</source><creator>Jiang, Hao ; Li, Tingjie ; Yang, Jun ; Mittler, Silvia ; Sabarinathan, Jayshri</creator><creatorcontrib>Jiang, Hao ; Li, Tingjie ; Yang, Jun ; Mittler, Silvia ; Sabarinathan, Jayshri</creatorcontrib><description>To improve the limit of detection in a nanoplasmonic sensor system, the optical performance of the metal nanostructures should be optimized according to the best spectral window of the measurement instrument. We propose that the spectral window from 1460 to 1610 nm can potentially provide ultrahigh instrumental resolution for biosensing. We optimized gold nanoring arrays such that the extinction peak position is inside the proposed window, the extinction peak is sharp enough to track the peak shift with high resolution and the figure of merit (sensitivity/linewidth) of the array is optimized at the same time. The peak-sharpening effect of the array caused by coherent interaction plays a central role in the optimization. The optimized array has a lattice constant in the range [1000 nm,1060 nm], a bulk index sensitivity of around 450 nm RIU and a figure of merit larger than 4. It is an enabling sensor element for a near-infrared sensor chip with ultrahigh resolution.</description><identifier>ISSN: 0957-4484</identifier><identifier>EISSN: 1361-6528</identifier><identifier>DOI: 10.1088/0957-4484/24/46/465502</identifier><identifier>PMID: 24157520</identifier><identifier>CODEN: NNOTER</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Biosensing Techniques - instrumentation ; Condensed matter: structure, mechanical and thermal properties ; Exact sciences and technology ; Fiber Optic Technology - instrumentation ; General equipment and techniques ; Gold - chemistry ; Instruments, apparatus, components and techniques common to several branches of physics and astronomy ; Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties ; Nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals ; Nanostructures - chemistry ; Physics ; Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing ; Spectrum Analysis - instrumentation ; Structure of solids and liquids; crystallography ; Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><ispartof>Nanotechnology, 2013-11, Vol.24 (46), p.465502</ispartof><rights>2013 IOP Publishing Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-d40c5200afde13deec2382e9fb629135f6b415a40511aa59d54c2b75bb53e4cd3</citedby><cites>FETCH-LOGICAL-c384t-d40c5200afde13deec2382e9fb629135f6b415a40511aa59d54c2b75bb53e4cd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/0957-4484/24/46/465502/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27903,27904,53824,53871</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27949071$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24157520$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jiang, Hao</creatorcontrib><creatorcontrib>Li, Tingjie</creatorcontrib><creatorcontrib>Yang, Jun</creatorcontrib><creatorcontrib>Mittler, Silvia</creatorcontrib><creatorcontrib>Sabarinathan, Jayshri</creatorcontrib><title>Optimization of gold nanoring arrays for biosensing in the fiber-optic communication window</title><title>Nanotechnology</title><addtitle>Nano</addtitle><addtitle>Nanotechnology</addtitle><description>To improve the limit of detection in a nanoplasmonic sensor system, the optical performance of the metal nanostructures should be optimized according to the best spectral window of the measurement instrument. We propose that the spectral window from 1460 to 1610 nm can potentially provide ultrahigh instrumental resolution for biosensing. We optimized gold nanoring arrays such that the extinction peak position is inside the proposed window, the extinction peak is sharp enough to track the peak shift with high resolution and the figure of merit (sensitivity/linewidth) of the array is optimized at the same time. The peak-sharpening effect of the array caused by coherent interaction plays a central role in the optimization. The optimized array has a lattice constant in the range [1000 nm,1060 nm], a bulk index sensitivity of around 450 nm RIU and a figure of merit larger than 4. It is an enabling sensor element for a near-infrared sensor chip with ultrahigh resolution.</description><subject>Biosensing Techniques - instrumentation</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Exact sciences and technology</subject><subject>Fiber Optic Technology - instrumentation</subject><subject>General equipment and techniques</subject><subject>Gold - chemistry</subject><subject>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</subject><subject>Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties</subject><subject>Nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals</subject><subject>Nanostructures - chemistry</subject><subject>Physics</subject><subject>Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing</subject><subject>Spectrum Analysis - instrumentation</subject><subject>Structure of solids and liquids; crystallography</subject><subject>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><issn>0957-4484</issn><issn>1361-6528</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkEtrAyEYRaW0NGnavxDcdDmNOjqPZQl9QSCbdtWFqKOpIaODTgjpr6_DpOmyIAhy7vX7DgBzjB4wqqoFqlmZUVrRBaELWqTDGCIXYIrzAmcFI9UlmJ6hCbiJcYsQxhXB12BCKGYlI2gKPtddb1v7LXrrHfQGbvyugU44H6zbQBGCOEZofIDS-qhdHF6tg_2XhsZKHTKfChRUvm33zqqx52Bd4w-34MqIXdR3p3sGPp6f3pev2Wr98rZ8XGUqr2ifNRSpNAsSptE4b7RWJK-Iro0sSI1zZgqZxhUUMYyFYHXDqCKyZFKyXFPV5DNQjL0q-BiDNrwLthXhyDHigy0-iOCDCE4opwUfbaXgfAx2e9nq5hz71ZOA-xMgohI7E4RTNv5xZU1rVOLEkZGzvuNbvw8u7fvf7z8-xoLC</recordid><startdate>20131122</startdate><enddate>20131122</enddate><creator>Jiang, Hao</creator><creator>Li, Tingjie</creator><creator>Yang, Jun</creator><creator>Mittler, Silvia</creator><creator>Sabarinathan, Jayshri</creator><general>IOP Publishing</general><general>Institute of Physics</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20131122</creationdate><title>Optimization of gold nanoring arrays for biosensing in the fiber-optic communication window</title><author>Jiang, Hao ; Li, Tingjie ; Yang, Jun ; Mittler, Silvia ; Sabarinathan, Jayshri</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-d40c5200afde13deec2382e9fb629135f6b415a40511aa59d54c2b75bb53e4cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Biosensing Techniques - instrumentation</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Exact sciences and technology</topic><topic>Fiber Optic Technology - instrumentation</topic><topic>General equipment and techniques</topic><topic>Gold - chemistry</topic><topic>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</topic><topic>Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties</topic><topic>Nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals</topic><topic>Nanostructures - chemistry</topic><topic>Physics</topic><topic>Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing</topic><topic>Spectrum Analysis - instrumentation</topic><topic>Structure of solids and liquids; crystallography</topic><topic>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Hao</creatorcontrib><creatorcontrib>Li, Tingjie</creatorcontrib><creatorcontrib>Yang, Jun</creatorcontrib><creatorcontrib>Mittler, Silvia</creatorcontrib><creatorcontrib>Sabarinathan, Jayshri</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Hao</au><au>Li, Tingjie</au><au>Yang, Jun</au><au>Mittler, Silvia</au><au>Sabarinathan, Jayshri</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of gold nanoring arrays for biosensing in the fiber-optic communication window</atitle><jtitle>Nanotechnology</jtitle><stitle>Nano</stitle><addtitle>Nanotechnology</addtitle><date>2013-11-22</date><risdate>2013</risdate><volume>24</volume><issue>46</issue><spage>465502</spage><pages>465502-</pages><issn>0957-4484</issn><eissn>1361-6528</eissn><coden>NNOTER</coden><abstract>To improve the limit of detection in a nanoplasmonic sensor system, the optical performance of the metal nanostructures should be optimized according to the best spectral window of the measurement instrument. We propose that the spectral window from 1460 to 1610 nm can potentially provide ultrahigh instrumental resolution for biosensing. We optimized gold nanoring arrays such that the extinction peak position is inside the proposed window, the extinction peak is sharp enough to track the peak shift with high resolution and the figure of merit (sensitivity/linewidth) of the array is optimized at the same time. The peak-sharpening effect of the array caused by coherent interaction plays a central role in the optimization. The optimized array has a lattice constant in the range [1000 nm,1060 nm], a bulk index sensitivity of around 450 nm RIU and a figure of merit larger than 4. It is an enabling sensor element for a near-infrared sensor chip with ultrahigh resolution.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><pmid>24157520</pmid><doi>10.1088/0957-4484/24/46/465502</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4484 |
ispartof | Nanotechnology, 2013-11, Vol.24 (46), p.465502 |
issn | 0957-4484 1361-6528 |
language | eng |
recordid | cdi_pascalfrancis_primary_27949071 |
source | MEDLINE; Institute of Physics Journals |
subjects | Biosensing Techniques - instrumentation Condensed matter: structure, mechanical and thermal properties Exact sciences and technology Fiber Optic Technology - instrumentation General equipment and techniques Gold - chemistry Instruments, apparatus, components and techniques common to several branches of physics and astronomy Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties Nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals Nanostructures - chemistry Physics Sensors (chemical, optical, electrical, movement, gas, etc.) remote sensing Spectrum Analysis - instrumentation Structure of solids and liquids crystallography Surfaces and interfaces thin films and whiskers (structure and nonelectronic properties) |
title | Optimization of gold nanoring arrays for biosensing in the fiber-optic communication window |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T00%3A47%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20gold%20nanoring%20arrays%20for%20biosensing%20in%20the%20fiber-optic%20communication%20window&rft.jtitle=Nanotechnology&rft.au=Jiang,%20Hao&rft.date=2013-11-22&rft.volume=24&rft.issue=46&rft.spage=465502&rft.pages=465502-&rft.issn=0957-4484&rft.eissn=1361-6528&rft.coden=NNOTER&rft_id=info:doi/10.1088/0957-4484/24/46/465502&rft_dat=%3Cpubmed_pasca%3E24157520%3C/pubmed_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/24157520&rfr_iscdi=true |