NH3–NO Coadsorption System on Pt(111). I. Structure of the Mixed Layer
In the selective catalytic reduction (SCR) process, nitrogen oxides are selectively transformed to N2 by reductants such as ammonia. The specificity of this reaction on platinum-based catalysts was tentatively attributed to the formation of NH3–NO coadsorption complexes, as indicated by several surf...
Gespeichert in:
Veröffentlicht in: | Journal of physical chemistry. C 2013-10, Vol.117 (41), p.21186-21195 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 21195 |
---|---|
container_issue | 41 |
container_start_page | 21186 |
container_title | Journal of physical chemistry. C |
container_volume | 117 |
creator | Peronio, Angelo Cepellotti, Andrea Marchini, Stefano Abdurakhmanova, Nasiba Dri, Carlo Africh, Cristina Esch, Friedrich Peressi, Maria Comelli, Giovanni |
description | In the selective catalytic reduction (SCR) process, nitrogen oxides are selectively transformed to N2 by reductants such as ammonia. The specificity of this reaction on platinum-based catalysts was tentatively attributed to the formation of NH3–NO coadsorption complexes, as indicated by several surface science techniques. Here we combine scanning tunneling microscopy (STM) and density functional theory (DFT) calculations to characterize the NH3–NO complex at the atomic scale on the (111) surface of platinum, investigating the intermolecular interactions that tune the selectivity. In this first article, we analyze the structures that arise upon coadsorption of NH3 and NO in terms of adsorption sites, geometry, energetics, and charge rearrangement. An ordered 2 × 2 adlayer forms, where the two molecules are arranged in a configuration that maximizes mutual interactions. In this structure, NH3 adsorbs on-top and NO on fcc-hollow sites, leading to a cohesional stabilization of the extended layer, calculated to be 0.29 eV/unit cell. The calculated vibrational energies of the coadsorption structure agree with the experimental values found in the literature. |
doi_str_mv | 10.1021/jp406068y |
format | Article |
fullrecord | <record><control><sourceid>acs_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_27895799</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d033564175</sourcerecordid><originalsourceid>FETCH-LOGICAL-a215t-5d03cc21fd53cf52d24452d7a178929efb80147ce65850b60ecfcfbec75846643</originalsourceid><addsrcrecordid>eNpFkM1KxDAcxIMouK4efINcBD10zT8fTXuURe3CuiusnkOaJtiyuy1JCvbmO_iGPokVZb3M_A7DMAxCl0BmQCjcNh0nKUmz4QhNIGc0kVyI4wNzeYrOQmgIEYwAm6BiVbCvj8_VGs9bXYXWd7Fu93gzhGh3eKTneA0ANzO8mOFN9L2Jvbe4dTi-WfxUv9sKL_Vg_Tk6cXob7MWfT9Hrw_3LvEiW68fF_G6ZaAoiJqIizBgKrhLMOEEryvmoUoPMcppbV2YEuDQ2FZkgZUqsccaV1kiR8TTlbIqufns7HYzeOq_3pg6q8_VO-0HRsUbIPP_PaRNU0_Z-P65SQNTPTepwE_sGEnlYTw</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>NH3–NO Coadsorption System on Pt(111). I. Structure of the Mixed Layer</title><source>ACS Publications</source><creator>Peronio, Angelo ; Cepellotti, Andrea ; Marchini, Stefano ; Abdurakhmanova, Nasiba ; Dri, Carlo ; Africh, Cristina ; Esch, Friedrich ; Peressi, Maria ; Comelli, Giovanni</creator><creatorcontrib>Peronio, Angelo ; Cepellotti, Andrea ; Marchini, Stefano ; Abdurakhmanova, Nasiba ; Dri, Carlo ; Africh, Cristina ; Esch, Friedrich ; Peressi, Maria ; Comelli, Giovanni</creatorcontrib><description>In the selective catalytic reduction (SCR) process, nitrogen oxides are selectively transformed to N2 by reductants such as ammonia. The specificity of this reaction on platinum-based catalysts was tentatively attributed to the formation of NH3–NO coadsorption complexes, as indicated by several surface science techniques. Here we combine scanning tunneling microscopy (STM) and density functional theory (DFT) calculations to characterize the NH3–NO complex at the atomic scale on the (111) surface of platinum, investigating the intermolecular interactions that tune the selectivity. In this first article, we analyze the structures that arise upon coadsorption of NH3 and NO in terms of adsorption sites, geometry, energetics, and charge rearrangement. An ordered 2 × 2 adlayer forms, where the two molecules are arranged in a configuration that maximizes mutual interactions. In this structure, NH3 adsorbs on-top and NO on fcc-hollow sites, leading to a cohesional stabilization of the extended layer, calculated to be 0.29 eV/unit cell. The calculated vibrational energies of the coadsorption structure agree with the experimental values found in the literature.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/jp406068y</identifier><language>eng</language><publisher>Columbus, OH: American Chemical Society</publisher><subject>Catalysis ; Catalysts: preparations and properties ; Chemistry ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Condensed matter: structure, mechanical and thermal properties ; Electron states ; Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures ; Electronic transport phenomena in thin films and low-dimensional structures ; Exact sciences and technology ; General and physical chemistry ; Methods of electronic structure calculations ; Physics ; Structure and morphology; thickness ; Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties) ; Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry ; Thin film structure and morphology</subject><ispartof>Journal of physical chemistry. C, 2013-10, Vol.117 (41), p.21186-21195</ispartof><rights>Copyright © 2013 American Chemical Society</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp406068y$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp406068y$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27895799$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Peronio, Angelo</creatorcontrib><creatorcontrib>Cepellotti, Andrea</creatorcontrib><creatorcontrib>Marchini, Stefano</creatorcontrib><creatorcontrib>Abdurakhmanova, Nasiba</creatorcontrib><creatorcontrib>Dri, Carlo</creatorcontrib><creatorcontrib>Africh, Cristina</creatorcontrib><creatorcontrib>Esch, Friedrich</creatorcontrib><creatorcontrib>Peressi, Maria</creatorcontrib><creatorcontrib>Comelli, Giovanni</creatorcontrib><title>NH3–NO Coadsorption System on Pt(111). I. Structure of the Mixed Layer</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>In the selective catalytic reduction (SCR) process, nitrogen oxides are selectively transformed to N2 by reductants such as ammonia. The specificity of this reaction on platinum-based catalysts was tentatively attributed to the formation of NH3–NO coadsorption complexes, as indicated by several surface science techniques. Here we combine scanning tunneling microscopy (STM) and density functional theory (DFT) calculations to characterize the NH3–NO complex at the atomic scale on the (111) surface of platinum, investigating the intermolecular interactions that tune the selectivity. In this first article, we analyze the structures that arise upon coadsorption of NH3 and NO in terms of adsorption sites, geometry, energetics, and charge rearrangement. An ordered 2 × 2 adlayer forms, where the two molecules are arranged in a configuration that maximizes mutual interactions. In this structure, NH3 adsorbs on-top and NO on fcc-hollow sites, leading to a cohesional stabilization of the extended layer, calculated to be 0.29 eV/unit cell. The calculated vibrational energies of the coadsorption structure agree with the experimental values found in the literature.</description><subject>Catalysis</subject><subject>Catalysts: preparations and properties</subject><subject>Chemistry</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Electron states</subject><subject>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</subject><subject>Electronic transport phenomena in thin films and low-dimensional structures</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Methods of electronic structure calculations</subject><subject>Physics</subject><subject>Structure and morphology; thickness</subject><subject>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><subject>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><subject>Thin film structure and morphology</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpFkM1KxDAcxIMouK4efINcBD10zT8fTXuURe3CuiusnkOaJtiyuy1JCvbmO_iGPokVZb3M_A7DMAxCl0BmQCjcNh0nKUmz4QhNIGc0kVyI4wNzeYrOQmgIEYwAm6BiVbCvj8_VGs9bXYXWd7Fu93gzhGh3eKTneA0ANzO8mOFN9L2Jvbe4dTi-WfxUv9sKL_Vg_Tk6cXob7MWfT9Hrw_3LvEiW68fF_G6ZaAoiJqIizBgKrhLMOEEryvmoUoPMcppbV2YEuDQ2FZkgZUqsccaV1kiR8TTlbIqufns7HYzeOq_3pg6q8_VO-0HRsUbIPP_PaRNU0_Z-P65SQNTPTepwE_sGEnlYTw</recordid><startdate>20131017</startdate><enddate>20131017</enddate><creator>Peronio, Angelo</creator><creator>Cepellotti, Andrea</creator><creator>Marchini, Stefano</creator><creator>Abdurakhmanova, Nasiba</creator><creator>Dri, Carlo</creator><creator>Africh, Cristina</creator><creator>Esch, Friedrich</creator><creator>Peressi, Maria</creator><creator>Comelli, Giovanni</creator><general>American Chemical Society</general><scope>IQODW</scope></search><sort><creationdate>20131017</creationdate><title>NH3–NO Coadsorption System on Pt(111). I. Structure of the Mixed Layer</title><author>Peronio, Angelo ; Cepellotti, Andrea ; Marchini, Stefano ; Abdurakhmanova, Nasiba ; Dri, Carlo ; Africh, Cristina ; Esch, Friedrich ; Peressi, Maria ; Comelli, Giovanni</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a215t-5d03cc21fd53cf52d24452d7a178929efb80147ce65850b60ecfcfbec75846643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Catalysis</topic><topic>Catalysts: preparations and properties</topic><topic>Chemistry</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Electron states</topic><topic>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</topic><topic>Electronic transport phenomena in thin films and low-dimensional structures</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Methods of electronic structure calculations</topic><topic>Physics</topic><topic>Structure and morphology; thickness</topic><topic>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</topic><topic>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</topic><topic>Thin film structure and morphology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peronio, Angelo</creatorcontrib><creatorcontrib>Cepellotti, Andrea</creatorcontrib><creatorcontrib>Marchini, Stefano</creatorcontrib><creatorcontrib>Abdurakhmanova, Nasiba</creatorcontrib><creatorcontrib>Dri, Carlo</creatorcontrib><creatorcontrib>Africh, Cristina</creatorcontrib><creatorcontrib>Esch, Friedrich</creatorcontrib><creatorcontrib>Peressi, Maria</creatorcontrib><creatorcontrib>Comelli, Giovanni</creatorcontrib><collection>Pascal-Francis</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peronio, Angelo</au><au>Cepellotti, Andrea</au><au>Marchini, Stefano</au><au>Abdurakhmanova, Nasiba</au><au>Dri, Carlo</au><au>Africh, Cristina</au><au>Esch, Friedrich</au><au>Peressi, Maria</au><au>Comelli, Giovanni</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>NH3–NO Coadsorption System on Pt(111). I. Structure of the Mixed Layer</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2013-10-17</date><risdate>2013</risdate><volume>117</volume><issue>41</issue><spage>21186</spage><epage>21195</epage><pages>21186-21195</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>In the selective catalytic reduction (SCR) process, nitrogen oxides are selectively transformed to N2 by reductants such as ammonia. The specificity of this reaction on platinum-based catalysts was tentatively attributed to the formation of NH3–NO coadsorption complexes, as indicated by several surface science techniques. Here we combine scanning tunneling microscopy (STM) and density functional theory (DFT) calculations to characterize the NH3–NO complex at the atomic scale on the (111) surface of platinum, investigating the intermolecular interactions that tune the selectivity. In this first article, we analyze the structures that arise upon coadsorption of NH3 and NO in terms of adsorption sites, geometry, energetics, and charge rearrangement. An ordered 2 × 2 adlayer forms, where the two molecules are arranged in a configuration that maximizes mutual interactions. In this structure, NH3 adsorbs on-top and NO on fcc-hollow sites, leading to a cohesional stabilization of the extended layer, calculated to be 0.29 eV/unit cell. The calculated vibrational energies of the coadsorption structure agree with the experimental values found in the literature.</abstract><cop>Columbus, OH</cop><pub>American Chemical Society</pub><doi>10.1021/jp406068y</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-7447 |
ispartof | Journal of physical chemistry. C, 2013-10, Vol.117 (41), p.21186-21195 |
issn | 1932-7447 1932-7455 |
language | eng |
recordid | cdi_pascalfrancis_primary_27895799 |
source | ACS Publications |
subjects | Catalysis Catalysts: preparations and properties Chemistry Condensed matter: electronic structure, electrical, magnetic, and optical properties Condensed matter: structure, mechanical and thermal properties Electron states Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures Electronic transport phenomena in thin films and low-dimensional structures Exact sciences and technology General and physical chemistry Methods of electronic structure calculations Physics Structure and morphology thickness Surfaces and interfaces thin films and whiskers (structure and nonelectronic properties) Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry Thin film structure and morphology |
title | NH3–NO Coadsorption System on Pt(111). I. Structure of the Mixed Layer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T01%3A06%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=NH3%E2%80%93NO%20Coadsorption%20System%20on%20Pt(111).%20I.%20Structure%20of%20the%20Mixed%20Layer&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Peronio,%20Angelo&rft.date=2013-10-17&rft.volume=117&rft.issue=41&rft.spage=21186&rft.epage=21195&rft.pages=21186-21195&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/jp406068y&rft_dat=%3Cacs_pasca%3Ed033564175%3C/acs_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |