NH3–NO Coadsorption System on Pt(111). I. Structure of the Mixed Layer

In the selective catalytic reduction (SCR) process, nitrogen oxides are selectively transformed to N2 by reductants such as ammonia. The specificity of this reaction on platinum-based catalysts was tentatively attributed to the formation of NH3–NO coadsorption complexes, as indicated by several surf...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2013-10, Vol.117 (41), p.21186-21195
Hauptverfasser: Peronio, Angelo, Cepellotti, Andrea, Marchini, Stefano, Abdurakhmanova, Nasiba, Dri, Carlo, Africh, Cristina, Esch, Friedrich, Peressi, Maria, Comelli, Giovanni
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 21195
container_issue 41
container_start_page 21186
container_title Journal of physical chemistry. C
container_volume 117
creator Peronio, Angelo
Cepellotti, Andrea
Marchini, Stefano
Abdurakhmanova, Nasiba
Dri, Carlo
Africh, Cristina
Esch, Friedrich
Peressi, Maria
Comelli, Giovanni
description In the selective catalytic reduction (SCR) process, nitrogen oxides are selectively transformed to N2 by reductants such as ammonia. The specificity of this reaction on platinum-based catalysts was tentatively attributed to the formation of NH3–NO coadsorption complexes, as indicated by several surface science techniques. Here we combine scanning tunneling microscopy (STM) and density functional theory (DFT) calculations to characterize the NH3–NO complex at the atomic scale on the (111) surface of platinum, investigating the intermolecular interactions that tune the selectivity. In this first article, we analyze the structures that arise upon coadsorption of NH3 and NO in terms of adsorption sites, geometry, energetics, and charge rearrangement. An ordered 2 × 2 adlayer forms, where the two molecules are arranged in a configuration that maximizes mutual interactions. In this structure, NH3 adsorbs on-top and NO on fcc-hollow sites, leading to a cohesional stabilization of the extended layer, calculated to be 0.29 eV/unit cell. The calculated vibrational energies of the coadsorption structure agree with the experimental values found in the literature.
doi_str_mv 10.1021/jp406068y
format Article
fullrecord <record><control><sourceid>acs_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_27895799</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d033564175</sourcerecordid><originalsourceid>FETCH-LOGICAL-a215t-5d03cc21fd53cf52d24452d7a178929efb80147ce65850b60ecfcfbec75846643</originalsourceid><addsrcrecordid>eNpFkM1KxDAcxIMouK4efINcBD10zT8fTXuURe3CuiusnkOaJtiyuy1JCvbmO_iGPokVZb3M_A7DMAxCl0BmQCjcNh0nKUmz4QhNIGc0kVyI4wNzeYrOQmgIEYwAm6BiVbCvj8_VGs9bXYXWd7Fu93gzhGh3eKTneA0ANzO8mOFN9L2Jvbe4dTi-WfxUv9sKL_Vg_Tk6cXob7MWfT9Hrw_3LvEiW68fF_G6ZaAoiJqIizBgKrhLMOEEryvmoUoPMcppbV2YEuDQ2FZkgZUqsccaV1kiR8TTlbIqufns7HYzeOq_3pg6q8_VO-0HRsUbIPP_PaRNU0_Z-P65SQNTPTepwE_sGEnlYTw</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>NH3–NO Coadsorption System on Pt(111). I. Structure of the Mixed Layer</title><source>ACS Publications</source><creator>Peronio, Angelo ; Cepellotti, Andrea ; Marchini, Stefano ; Abdurakhmanova, Nasiba ; Dri, Carlo ; Africh, Cristina ; Esch, Friedrich ; Peressi, Maria ; Comelli, Giovanni</creator><creatorcontrib>Peronio, Angelo ; Cepellotti, Andrea ; Marchini, Stefano ; Abdurakhmanova, Nasiba ; Dri, Carlo ; Africh, Cristina ; Esch, Friedrich ; Peressi, Maria ; Comelli, Giovanni</creatorcontrib><description>In the selective catalytic reduction (SCR) process, nitrogen oxides are selectively transformed to N2 by reductants such as ammonia. The specificity of this reaction on platinum-based catalysts was tentatively attributed to the formation of NH3–NO coadsorption complexes, as indicated by several surface science techniques. Here we combine scanning tunneling microscopy (STM) and density functional theory (DFT) calculations to characterize the NH3–NO complex at the atomic scale on the (111) surface of platinum, investigating the intermolecular interactions that tune the selectivity. In this first article, we analyze the structures that arise upon coadsorption of NH3 and NO in terms of adsorption sites, geometry, energetics, and charge rearrangement. An ordered 2 × 2 adlayer forms, where the two molecules are arranged in a configuration that maximizes mutual interactions. In this structure, NH3 adsorbs on-top and NO on fcc-hollow sites, leading to a cohesional stabilization of the extended layer, calculated to be 0.29 eV/unit cell. The calculated vibrational energies of the coadsorption structure agree with the experimental values found in the literature.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/jp406068y</identifier><language>eng</language><publisher>Columbus, OH: American Chemical Society</publisher><subject>Catalysis ; Catalysts: preparations and properties ; Chemistry ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Condensed matter: structure, mechanical and thermal properties ; Electron states ; Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures ; Electronic transport phenomena in thin films and low-dimensional structures ; Exact sciences and technology ; General and physical chemistry ; Methods of electronic structure calculations ; Physics ; Structure and morphology; thickness ; Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties) ; Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry ; Thin film structure and morphology</subject><ispartof>Journal of physical chemistry. C, 2013-10, Vol.117 (41), p.21186-21195</ispartof><rights>Copyright © 2013 American Chemical Society</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp406068y$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp406068y$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27895799$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Peronio, Angelo</creatorcontrib><creatorcontrib>Cepellotti, Andrea</creatorcontrib><creatorcontrib>Marchini, Stefano</creatorcontrib><creatorcontrib>Abdurakhmanova, Nasiba</creatorcontrib><creatorcontrib>Dri, Carlo</creatorcontrib><creatorcontrib>Africh, Cristina</creatorcontrib><creatorcontrib>Esch, Friedrich</creatorcontrib><creatorcontrib>Peressi, Maria</creatorcontrib><creatorcontrib>Comelli, Giovanni</creatorcontrib><title>NH3–NO Coadsorption System on Pt(111). I. Structure of the Mixed Layer</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>In the selective catalytic reduction (SCR) process, nitrogen oxides are selectively transformed to N2 by reductants such as ammonia. The specificity of this reaction on platinum-based catalysts was tentatively attributed to the formation of NH3–NO coadsorption complexes, as indicated by several surface science techniques. Here we combine scanning tunneling microscopy (STM) and density functional theory (DFT) calculations to characterize the NH3–NO complex at the atomic scale on the (111) surface of platinum, investigating the intermolecular interactions that tune the selectivity. In this first article, we analyze the structures that arise upon coadsorption of NH3 and NO in terms of adsorption sites, geometry, energetics, and charge rearrangement. An ordered 2 × 2 adlayer forms, where the two molecules are arranged in a configuration that maximizes mutual interactions. In this structure, NH3 adsorbs on-top and NO on fcc-hollow sites, leading to a cohesional stabilization of the extended layer, calculated to be 0.29 eV/unit cell. The calculated vibrational energies of the coadsorption structure agree with the experimental values found in the literature.</description><subject>Catalysis</subject><subject>Catalysts: preparations and properties</subject><subject>Chemistry</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Electron states</subject><subject>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</subject><subject>Electronic transport phenomena in thin films and low-dimensional structures</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Methods of electronic structure calculations</subject><subject>Physics</subject><subject>Structure and morphology; thickness</subject><subject>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><subject>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><subject>Thin film structure and morphology</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpFkM1KxDAcxIMouK4efINcBD10zT8fTXuURe3CuiusnkOaJtiyuy1JCvbmO_iGPokVZb3M_A7DMAxCl0BmQCjcNh0nKUmz4QhNIGc0kVyI4wNzeYrOQmgIEYwAm6BiVbCvj8_VGs9bXYXWd7Fu93gzhGh3eKTneA0ANzO8mOFN9L2Jvbe4dTi-WfxUv9sKL_Vg_Tk6cXob7MWfT9Hrw_3LvEiW68fF_G6ZaAoiJqIizBgKrhLMOEEryvmoUoPMcppbV2YEuDQ2FZkgZUqsccaV1kiR8TTlbIqufns7HYzeOq_3pg6q8_VO-0HRsUbIPP_PaRNU0_Z-P65SQNTPTepwE_sGEnlYTw</recordid><startdate>20131017</startdate><enddate>20131017</enddate><creator>Peronio, Angelo</creator><creator>Cepellotti, Andrea</creator><creator>Marchini, Stefano</creator><creator>Abdurakhmanova, Nasiba</creator><creator>Dri, Carlo</creator><creator>Africh, Cristina</creator><creator>Esch, Friedrich</creator><creator>Peressi, Maria</creator><creator>Comelli, Giovanni</creator><general>American Chemical Society</general><scope>IQODW</scope></search><sort><creationdate>20131017</creationdate><title>NH3–NO Coadsorption System on Pt(111). I. Structure of the Mixed Layer</title><author>Peronio, Angelo ; Cepellotti, Andrea ; Marchini, Stefano ; Abdurakhmanova, Nasiba ; Dri, Carlo ; Africh, Cristina ; Esch, Friedrich ; Peressi, Maria ; Comelli, Giovanni</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a215t-5d03cc21fd53cf52d24452d7a178929efb80147ce65850b60ecfcfbec75846643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Catalysis</topic><topic>Catalysts: preparations and properties</topic><topic>Chemistry</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Electron states</topic><topic>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</topic><topic>Electronic transport phenomena in thin films and low-dimensional structures</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Methods of electronic structure calculations</topic><topic>Physics</topic><topic>Structure and morphology; thickness</topic><topic>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</topic><topic>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</topic><topic>Thin film structure and morphology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peronio, Angelo</creatorcontrib><creatorcontrib>Cepellotti, Andrea</creatorcontrib><creatorcontrib>Marchini, Stefano</creatorcontrib><creatorcontrib>Abdurakhmanova, Nasiba</creatorcontrib><creatorcontrib>Dri, Carlo</creatorcontrib><creatorcontrib>Africh, Cristina</creatorcontrib><creatorcontrib>Esch, Friedrich</creatorcontrib><creatorcontrib>Peressi, Maria</creatorcontrib><creatorcontrib>Comelli, Giovanni</creatorcontrib><collection>Pascal-Francis</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peronio, Angelo</au><au>Cepellotti, Andrea</au><au>Marchini, Stefano</au><au>Abdurakhmanova, Nasiba</au><au>Dri, Carlo</au><au>Africh, Cristina</au><au>Esch, Friedrich</au><au>Peressi, Maria</au><au>Comelli, Giovanni</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>NH3–NO Coadsorption System on Pt(111). I. Structure of the Mixed Layer</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2013-10-17</date><risdate>2013</risdate><volume>117</volume><issue>41</issue><spage>21186</spage><epage>21195</epage><pages>21186-21195</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>In the selective catalytic reduction (SCR) process, nitrogen oxides are selectively transformed to N2 by reductants such as ammonia. The specificity of this reaction on platinum-based catalysts was tentatively attributed to the formation of NH3–NO coadsorption complexes, as indicated by several surface science techniques. Here we combine scanning tunneling microscopy (STM) and density functional theory (DFT) calculations to characterize the NH3–NO complex at the atomic scale on the (111) surface of platinum, investigating the intermolecular interactions that tune the selectivity. In this first article, we analyze the structures that arise upon coadsorption of NH3 and NO in terms of adsorption sites, geometry, energetics, and charge rearrangement. An ordered 2 × 2 adlayer forms, where the two molecules are arranged in a configuration that maximizes mutual interactions. In this structure, NH3 adsorbs on-top and NO on fcc-hollow sites, leading to a cohesional stabilization of the extended layer, calculated to be 0.29 eV/unit cell. The calculated vibrational energies of the coadsorption structure agree with the experimental values found in the literature.</abstract><cop>Columbus, OH</cop><pub>American Chemical Society</pub><doi>10.1021/jp406068y</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2013-10, Vol.117 (41), p.21186-21195
issn 1932-7447
1932-7455
language eng
recordid cdi_pascalfrancis_primary_27895799
source ACS Publications
subjects Catalysis
Catalysts: preparations and properties
Chemistry
Condensed matter: electronic structure, electrical, magnetic, and optical properties
Condensed matter: structure, mechanical and thermal properties
Electron states
Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures
Electronic transport phenomena in thin films and low-dimensional structures
Exact sciences and technology
General and physical chemistry
Methods of electronic structure calculations
Physics
Structure and morphology
thickness
Surfaces and interfaces
thin films and whiskers (structure and nonelectronic properties)
Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry
Thin film structure and morphology
title NH3–NO Coadsorption System on Pt(111). I. Structure of the Mixed Layer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T01%3A06%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=NH3%E2%80%93NO%20Coadsorption%20System%20on%20Pt(111).%20I.%20Structure%20of%20the%20Mixed%20Layer&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Peronio,%20Angelo&rft.date=2013-10-17&rft.volume=117&rft.issue=41&rft.spage=21186&rft.epage=21195&rft.pages=21186-21195&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/jp406068y&rft_dat=%3Cacs_pasca%3Ed033564175%3C/acs_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true