Infinitely many solutions for a perturbed nonlinear fractional boundary value problems depending on two parameters: Dynamics of Fractional Partial Differential Equations

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The European physical journal. ST, Special topics Special topics, 2013, Vol.222 (8), p.1999-2013
Hauptverfasser: NYAMORADI, N, ZHOU, Y
Format: Artikel
Sprache:rus
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2013
container_issue 8
container_start_page 1999
container_title The European physical journal. ST, Special topics
container_volume 222
creator NYAMORADI, N
ZHOU, Y
description
format Article
fullrecord <record><control><sourceid>pascalfrancis</sourceid><recordid>TN_cdi_pascalfrancis_primary_27837647</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>27837647</sourcerecordid><originalsourceid>FETCH-pascalfrancis_primary_278376473</originalsourceid><addsrcrecordid>eNqNjD2rwkAQAA9R8PM_bGMpJMYkWsuTZ28vm2QjJ5e9Y_fiI_9ehWdvNVMMMzKz9JCnm2KXpOOPZ3k-NXPVe5LkxfaQzYycubVsI7kBOuQB1Ls-Ws8KrRdACCSxl4oaYM_OMqFAK1i_G3RQ-Z4blAEe6HqCIL5y1Ck0FIgbyzfwDPHPQ0DBjiKJLs2kRae0-ufCrE8_l-PvJqDW6F5zrq1eg9juNb5uy31WFrsy-7Z7AvWcUJA</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Infinitely many solutions for a perturbed nonlinear fractional boundary value problems depending on two parameters: Dynamics of Fractional Partial Differential Equations</title><source>SpringerLink Journals - AutoHoldings</source><creator>NYAMORADI, N ; ZHOU, Y</creator><creatorcontrib>NYAMORADI, N ; ZHOU, Y</creatorcontrib><identifier>ISSN: 1951-6355</identifier><identifier>EISSN: 1951-6401</identifier><language>rus</language><publisher>Les Ullis: EDP Sciences</publisher><ispartof>The European physical journal. ST, Special topics, 2013, Vol.222 (8), p.1999-2013</ispartof><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4022</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27837647$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>NYAMORADI, N</creatorcontrib><creatorcontrib>ZHOU, Y</creatorcontrib><title>Infinitely many solutions for a perturbed nonlinear fractional boundary value problems depending on two parameters: Dynamics of Fractional Partial Differential Equations</title><title>The European physical journal. ST, Special topics</title><issn>1951-6355</issn><issn>1951-6401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqNjD2rwkAQAA9R8PM_bGMpJMYkWsuTZ28vm2QjJ5e9Y_fiI_9ehWdvNVMMMzKz9JCnm2KXpOOPZ3k-NXPVe5LkxfaQzYycubVsI7kBOuQB1Ls-Ws8KrRdACCSxl4oaYM_OMqFAK1i_G3RQ-Z4blAEe6HqCIL5y1Ck0FIgbyzfwDPHPQ0DBjiKJLs2kRae0-ufCrE8_l-PvJqDW6F5zrq1eg9juNb5uy31WFrsy-7Z7AvWcUJA</recordid><startdate>2013</startdate><enddate>2013</enddate><creator>NYAMORADI, N</creator><creator>ZHOU, Y</creator><general>EDP Sciences</general><scope>IQODW</scope></search><sort><creationdate>2013</creationdate><title>Infinitely many solutions for a perturbed nonlinear fractional boundary value problems depending on two parameters</title><author>NYAMORADI, N ; ZHOU, Y</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-pascalfrancis_primary_278376473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>rus</language><creationdate>2013</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>NYAMORADI, N</creatorcontrib><creatorcontrib>ZHOU, Y</creatorcontrib><collection>Pascal-Francis</collection><jtitle>The European physical journal. ST, Special topics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>NYAMORADI, N</au><au>ZHOU, Y</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Infinitely many solutions for a perturbed nonlinear fractional boundary value problems depending on two parameters: Dynamics of Fractional Partial Differential Equations</atitle><jtitle>The European physical journal. ST, Special topics</jtitle><date>2013</date><risdate>2013</risdate><volume>222</volume><issue>8</issue><spage>1999</spage><epage>2013</epage><pages>1999-2013</pages><issn>1951-6355</issn><eissn>1951-6401</eissn><cop>Les Ullis</cop><pub>EDP Sciences</pub></addata></record>
fulltext fulltext
identifier ISSN: 1951-6355
ispartof The European physical journal. ST, Special topics, 2013, Vol.222 (8), p.1999-2013
issn 1951-6355
1951-6401
language rus
recordid cdi_pascalfrancis_primary_27837647
source SpringerLink Journals - AutoHoldings
title Infinitely many solutions for a perturbed nonlinear fractional boundary value problems depending on two parameters: Dynamics of Fractional Partial Differential Equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T18%3A46%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Infinitely%20many%20solutions%20for%20a%20perturbed%20nonlinear%20fractional%20boundary%20value%20problems%20depending%20on%20two%20parameters:%20Dynamics%20of%20Fractional%20Partial%20Differential%20Equations&rft.jtitle=The%20European%20physical%20journal.%20ST,%20Special%20topics&rft.au=NYAMORADI,%20N&rft.date=2013&rft.volume=222&rft.issue=8&rft.spage=1999&rft.epage=2013&rft.pages=1999-2013&rft.issn=1951-6355&rft.eissn=1951-6401&rft_id=info:doi/&rft_dat=%3Cpascalfrancis%3E27837647%3C/pascalfrancis%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true